

BTicino SpA Viale Borri, 231 21100 Varese - ITALY

www.imeitaly.com

Delta D4-h

Index

Time sensors

They detect the signals, where rise

Protection

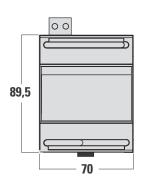
They report anomalies in the system, protecting it

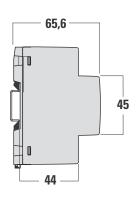
Communication

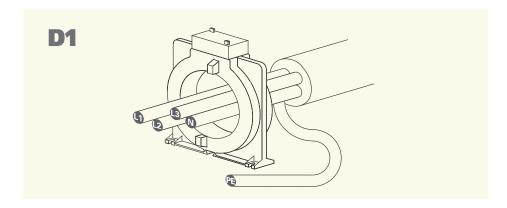
They communicate the measurements carried at a distance

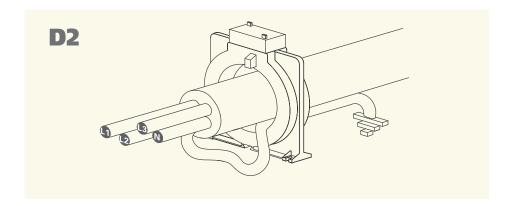
Interface different ways of communication

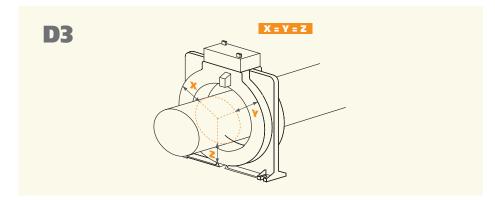
wiring instructions	page 3
Dimensions	page 3
Wiring diagrams AL.2 = 100% AL.2 = 20-30-40-50% rEM	page 4 page 5
Ring current transformers	page 6
Front frame description In monitoring condition In programming phase	page 7 page 8
Programmable parameters	page 9-1
Display in monitoring condition	page 11
Control	page 12
Programmed parameter modification	page 12
Delta TCS Controller Use with Delta TCS controller	page 13
Auxiliary Supply	page 13
Factory settings	page 13
Example of networking	page 14


Wiring instructions

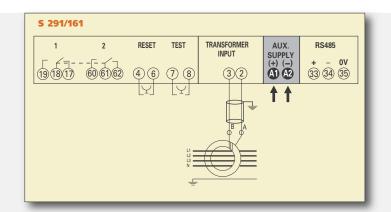

Mounting of this equipment must be carried out just by skilled personnel.


Please make sure that the data on the label (extra supply voltage, frequency, etc.) correspond to the network on which the meter must be connected.

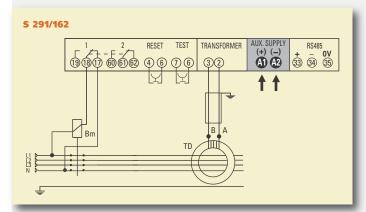

- Mounting position does not affect in any way the proper working
- Scrupulously respect the wiring diagram; an error in connection unavoidably leads to wrong measurements or damages to the device
- The attainment of the full functionality for the differential protective system is related to the mounting mode. Therefore we suggest:
 - To reduce as much as possible the distance between ring current transformer and differential relay
 - For connection, to use shielded or braided cables
 - To avoid placing the ring current transformer-differential relay connection cables in parallel with power conductors
 - To avoid mounting ring current transformer and differential relay near sources of strong electromagnetic fields (big transformers)
 - Just the active conductors cross the ring current transformer (drawing D1)
 - Using a shielded cable, the armor must be grounded as per (drawing D2)
 - The conductors must be placed in the middle of the ring current transformer (drawing D3)

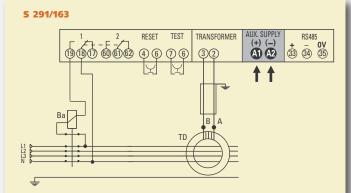

Dimensions

LE12570AA E 10/20 - 01IM cod.RDD421..

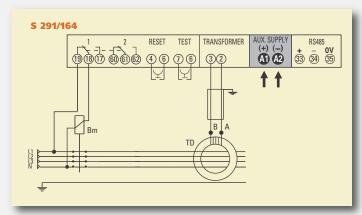

Wiring diagrams

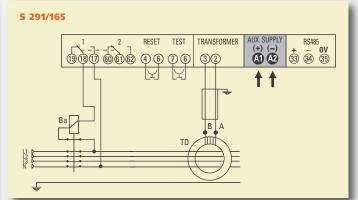
AL.2 = 100%


NOTE: the wiring diagrams, show the device complete with RS485 interface.

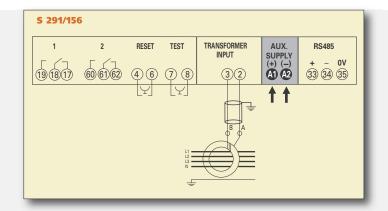

In case of version without of these features, the corresponding terminals must not be considered.

AL.2 = 100%	rEL			
100%	nd	nE		
Alarm 2 contacts (2 relay in parallel)	Normally de-energized	Normally energized		

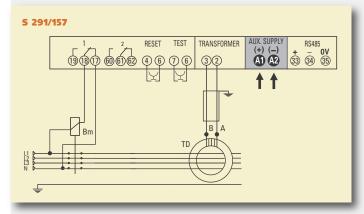


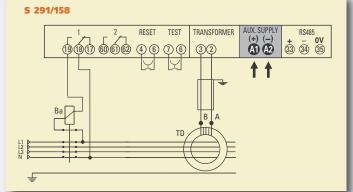

rEL = nd

rEL = nE

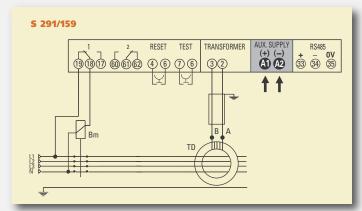

Wiring diagrams

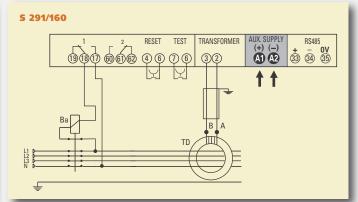
AL.2 = 20-30-40-50% rEM


NOTE: the wiring diagrams, show the device complete with RS485 interface.


In case of version without of these features, the corresponding terminals must not be considered.

AL	.2 = 20-30-40-50	% rEL	rEL			
20-30-40-50%		rEM	nd nE			
Alarm relay 1 Pre-alarm relay 2		Remote RS485	Normally de-energized	Normally energized		




rEL = nd

rEL = nE

LE12570AA_E 10/20 - 01IM cod.RDD421..

Ring Current Transformers

Choice of the ring current transformer for differential relays series DELTA depending on the minimum value of the leakage current to be detected and the diameter of the hole in which have to pass all the active conductors of the line to be protected.

Mounting with strong transient currents (max. 6In) according to IEC/EN 60947-2 enclosure M.

In order to avoid ill-timed interventions (caused by transient currents and not by real insulation defects), the standards provide for a test 6 times the rated current; for installations in conformity with what provided by the standard, you have to stick to the values shown in the table

Diameter: transformer inner hole diameter (passing cables/bars)

I∆n min: min. I∆n value which can be loaded on the differential relay linked to the ring current transformer

In: switch or disconnector rated current

The shown values are valid only if the conductors are exactly passing in the middle of the ring current transformer

Ex. choice of the ring current transformer for switch rated current (In) = 125A Respecting the parameters provided by the standard IEC/EN 60947-2 enclosure M. you have to use a transformer model **Del-80** (code TDGC2)

Current In = 170A - Current 6In = 1020A

For plants with poor transient currents (< **6In**) it is possible to use ring current transformers with lower rated currents, following this formula:

6In (value shown in the table)

= Max. allowed overload

Is (rated current of used switch)

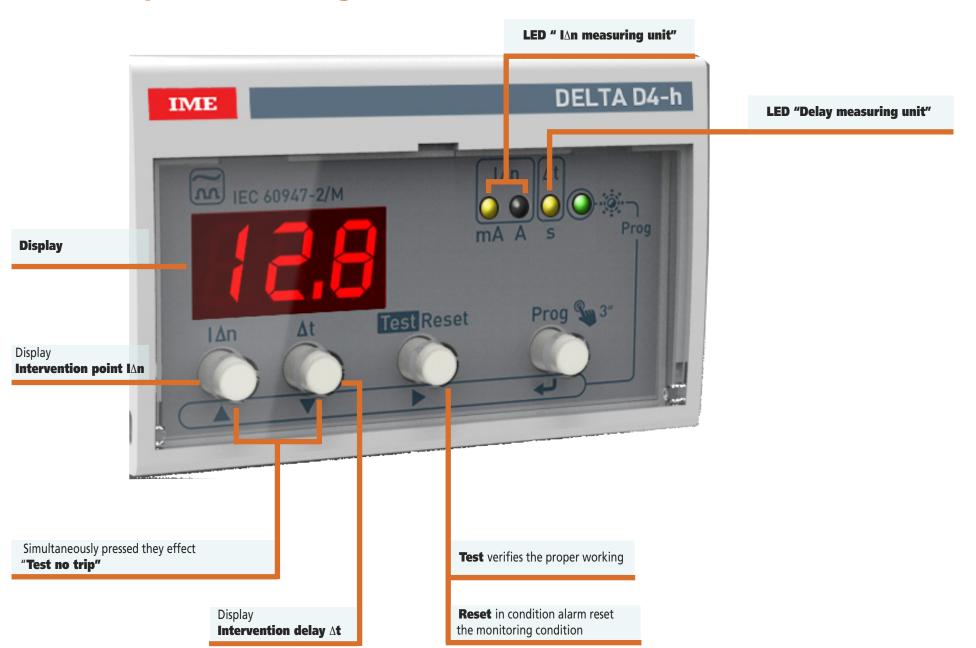
Using a transformer **DeIA-310** (code **TDAC2**) with value **6In = 3780A** with switch with rated current **In = 1250A**

3780A ——— = 3,024 1250A

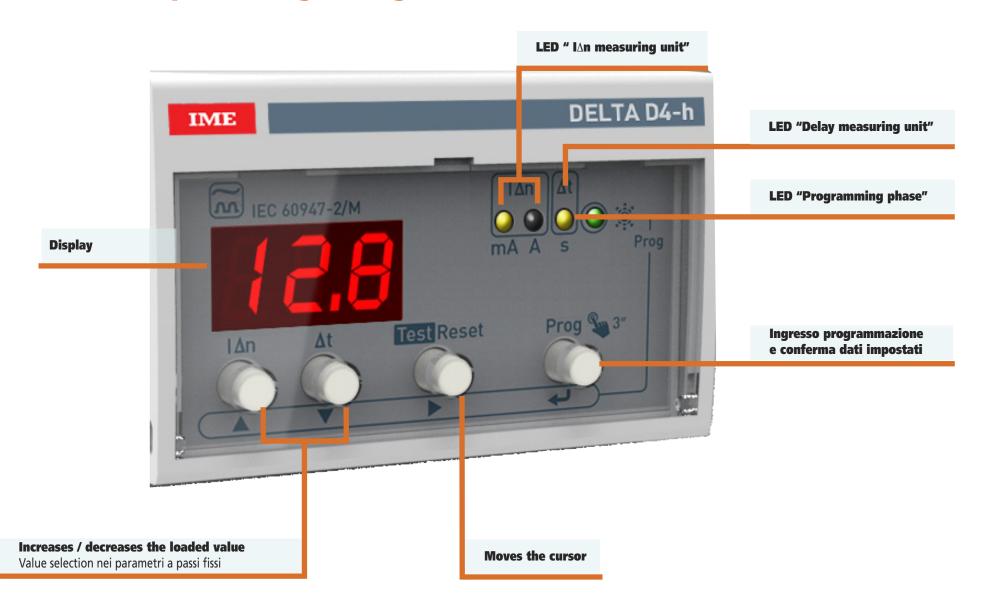
The highest admitted overload corresponds to 3,024 times the switch rated current

					1					
Model	Del-28	Del-35	Del-60	Del-80	Del-110	Del-140	Del-210	DelA-110	DelA-150	DelA-310
Code	TDGA2	TDGB2	TDGH2	TDGC2	TDGD2	TDGE2	TDGF2	TDAA2	TDAB2	TDAC2
Diameter	28mm	35mm	60mm	80mm	110mm	140mm	210mm	110mm	150mm	310mm
I∆n *	0,03A	0,03A	0,05A	0,1A	0,15A	0,15A	1A	1A	0,3A	3A
In	65A	70A	90A	170A	250A	250A	400A	250A	250A	630A
6In	390A	420A	540A	1020A	1500A	1500A	2400A	1500A	1500A	3780

LE12570AA_E 10/20 - 01IM cod.RDD421..


^{*} Values measured according to normal load PF = 0.5 - dt = 0 - t = 2 sec.

Front Frame Description in monitoring condition



E12570AA_E 10/20 - 01IM cod.RDD421..

Front Frame Description in Programming Phase

Programmable parameters

Feed the meter, terminals A1 and A2

1 PAS

Access Password

Keep pressed **Prog** key until the page **PAS** key until the page

Press \leftarrow

000 is shown

Load password 100 and confirm

ATTENTION

During the whole programming phase the **LED Prog** is blinking, signaling that the meter is not in monitoring phase but in programming phase.

- increases the loaded value
- reduces the loaded value
- moves the cursor
- ← confirms

2 Mod

Press 🚚

The meter can be used in **ELR** or **Mon** function.

ELR active protection (standard working for earth leakage relay)

Mon non-active protection; the meter just works as leakage current display

- function selection confirms
- 2.1 In the event the **Mon** function is selected (monitor), **SAV** page appears (setting backup)

Press 🖊

no programming is not backed up and you leave the phase or

YES programming is backed up

function selection confirms

The meter just works as display, alternatively showing Mon wording and the $I\Delta n$ leakage current instantaneous value (together with the turning on of A or mA metering unit LED)

2.2 If the ELR active protection function is selected (earth leakage relay standard working), appears the SAV page (setting backup)

function selection

← confirms

3 Idn

Intervention Point Selection

Press 🚚

Selectable values: 30mA...30A (19 ranges)

	30mA	50mA	75mA	100mA	150mA	200mA	300mA	500mA	750mA
l∆n				1A	1,5A	2A	3A	5A	7,5A
				10A	15A	20A	30A		

range selection

→ confirms

4 d1

Intervention Delay Selection

Press 🚚

Selectable values $\Delta t(s)$: 0 – 0,06 – 0,15 – 0,25 – 0,5 – 1 – 2,5 – 5s

value selection

Set point (I∆n)	30mA		50mA30A					
Selected delay Δt(s)	0s	0,06s	0,15s	0,25s	0,5s	1s	2,5s	5s
Non-operating time at @ 2I\Dan		0,06s	0,15s	0,25s	0,5s	1s	2,5s	5s
Max. delay @ 5l∆n	0,03s	0,13s	0,22s	0,44s	0,7s	1,8s	3s	5,5s

ATTENTION

by selecting the intervention threshold at 30mA (see previous point) the intervention delay is automatically excluded (it is not possible to select other values besides Os)

5 rEL

State of Relay Selection Terminals 17-18-19

Press 📙

Selectable values: nd = negative security (normally de-energized) or

nE = positive security (normally energized)

state selection confirm

LE12570AA E 10/20 - 01IM cod.RDD421...

6 AL.2

Alarm 2 Terminals 60-61-62 (relay 2)

Press 🚚

Selectables values: 20-30-40-50-100-rEM

value selection confirms

20-30-40-50% = pre-alarm 20-30-40-50% $I\Delta n$ (value loaded at point 3)

wiring diagram S 291/156

State of relay: negative security (normally de-energized)

The pre-alarm intervention detects a differential current higher than loaded value $(\%I\Delta n)$

100% = alarm with 2 output contacts, just one setting (value charged at point 3) wiring diagram **S 291/161**

State of relay: negative security (normally de-energized) or normally energized positive security according to what programmed for relay 1 (value charged at point 5)

rEM = remote control

wiring diagram S 291/156

It can be manufactured just with RS485 communication.

Relay is driven via communication

State of relay: negative security (normally de-energized)

7 rSt

Reset

Press 📙

Selectable values: MAn - AUt

value selection confirms

MAn = local or remote manual-reset

The state of the alarm lingers on until the operator doesn't act on **Reset** key. Reset is inhibited with persistent differential current >50% loaded $I\Delta n$.

Local manual-reset: front frame key Test/Reset

Remote manual-reset: external contact make, terminals 4-6.

AUt = automatic reset

Press 🚚

rEt = number of attempts: 1...255

increases the loaded value

reduces the loaded value

moves the cursor

dEL = lapse between the attempts: 1...999s

increases the loaded value

reduces the loaded value

moves the cursor

← confirms

When the alarm is intervened, the meter automatically resets, making the program med number of attempts with relevant time interval.

After 30 minutes from reset, the attempt counter automatically resets. Reset is inhibited with persistent differential current >50% loaded $I\Delta n$

8 FLt

Filter for harmonic components

Press 📙

Selectable values: OFF - On

The filter is automatically disabled with I n = 30mA setting (point 3)

▲ ▼ value selection

← confirms

9 RS485 communication (where provided)

For the communication as well as the transferred data modes, please refer to the communication Protocol.

Add Address

Press 📙

Selectable values: 1...255

increases the loaded value

▼ reduces the loaded value

moves the cursor

→ confirms

11

bAu transmission speed

Press 🚚

Selectable values: 4,8 – 9,6 – 19,2 – 38,4 Kbit/s

value selection confirms

PAr Parity Bit

Press 🚚

Selectable values: non (none) - odd (odd) - EVE (even)

value selection

confirms

tim Waiting time before answer

Press 🚚

increases the loaded value

reduces the loaded value

moves the cursor

confirms

Selectable values: 3...99ms

Press 🚚

Programming backup

SAV backup

Press 🚚

Selectable values:

programming is saved (message displayed Sto)

programming is not saved and you leave the phase (message displayed Abo)

value selection confirms

Display in monitoring condition

Instantaneous differential current IAn

Display indication + metering unit LED (mA or A)

Value of programmed I∆n intervention point

Press **△**n

Display indication + metering unit LED (mA or A)

Value of programmed ∆t intervention delay

Press ∆t

Display value + metering unit $\Delta t(s)$

Alarm condition signaling

Alarm intervention: message ALL + relay 1 switching*

Pre-alarm intervention: relay 2 switching

Ring current transformer-relay connection breakdown: message Ct + relay 1 switching*

Remote control intervention: relay 2 switching

*Relay 1 and 2 with configuration AL2 = 100% (2 Relay in parallel)

LE12570AA E 10/20 - 01IM cod.RDD421..

Control

Manual Test

Verifies the proper working of earth leakage relay, included the output relays

Local

Front key Test/Reset

Remote

External contact make, terminals 7-8 (not possible with d.c. extra supply voltage)

After having carried out the **Test**, display alternatively shows **000 / tSt**

Manual-Reset

Local

Front key Test/Reset

Remote

External contact make, terminals 4 - 6

After having carried out the Reset, display alternatively shows rES / 000

Test manuale no Trip

Verifies the proper working of earth leakage relay, without causing the output relay switching Front $key \triangle (I \triangle n) + \nabla (I \triangle n)$ simultaneously pressed

Displayed message **tnt** + contemporaneous switching on of **4 LED's** (**ma / A / s / Prog**)

By releasing the keys, if the meter is properly working, message **YES** is displayed

When the test is over, the earth leakage relay automatically returns in monitoring condition **Test.**

Programmed parameter modification

If it is necessary to modify a parameter of the meter (once the device is programmed), it is possible to enter the programming menu and directly access the parameter to modify, without having to scroll the whole menu.

Keep pressed the **Prog** key until the page **PAS** is displayed

Press 🚚

Appears 000

Load 100 and confirm

Using the keys ▲ **Troll** the parameters

Press the **Prog** key to enter and modify the programming

With the first pressure of the **Prog** key, it is displayed the value for that parameter actually stored

Modify the parameter, then keep pressed the **Prog** key until appears the wording **SAV**

Press once again **Prog**

The message **nO** is displayed

Act on ▲to display YES

Confirm by pressing \leftarrow

In any moment of the programming phase, it is possible to exit the menu without modifying any parameter, by keeping pressed the **Prog** key until appears the wording SAV

Press once again **Prog**

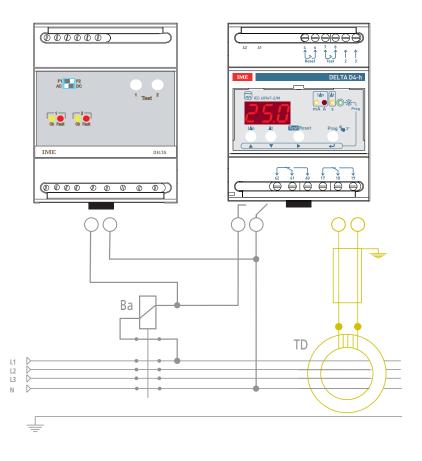
The message **nO** is displayed

Confirm by pressing ←

The message **Abo** is displayed

The meter leaves the programming menu without modifying any parameter

Key	Message	Parameter	Value	Point		
V	Mod	Mod Function ELR standard - MON monitor				
V	Idn Intervention threshold		30mA30A	3		
V	dt Intervention delay		05s	4		
V	rEL State of reay		Normally energized or de-energized	5		
V	AL.2 Alarm 2		Alarm 2 contacts / alarm + pre-alarme / alarm + remote control			
V	rSt Reset		Manual or automatic	7		
V	FLt Armonic filter		On / Off	8		
V	Add	RS485 address	1255			
V	bAu	RS485 communication speed	4,8 - 9,6 - 19,2 - 38,4 Kbit/s	9		
V	PAr	RS485 parity bit	Even - odd - none			
V	tiN	RS485 waiting before answer	999ms			
_	SAV	Backup		10		

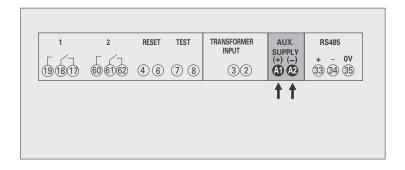


Delta TCS Controller

Switch opening circuit controller with current launch coil, model Delta TCS

It guarantees the reliability of the differential protection by monitoring the efficiency of the release circuit of one or two current launch coil switches and signaling the opening circuit breakdown through alarm display (front LED) and output relay intervention. It can be used for all the applications which use the current launch coil circuit to control its efficiency (for instance safety circuits, acoustic and visual signaling of states of alarm, fire pumps, etc.)

Auxiliary Supply


Terminals A1 and A2

Auxiliary supply direct or alternating current electrical supply which is necessary for proper working of the device.

Please verify that the available supply voltage meets the one shown on the data label of the meter (voltage value and any frequency).

Where a double voltage is shown (for instance 20...150Vdc / 48Vac) the meter can be fed with alternating voltage 48Vac or direct voltage 20...150Vdc indifferently.

In case of direct voltage supply please respect the shown polarities A1 (+) and A2 (-).

Factory settings

PAS Access password: 100

Mod Function: **ELR**

Idn Intervention point: 30mA
Intervention delay: 0s

rEL State of alarm Relay: nd negative security – normally de-energized

AL.2 Relay 2 function: 100 alarm with 2 contacts

rSt Reset: MAN manual

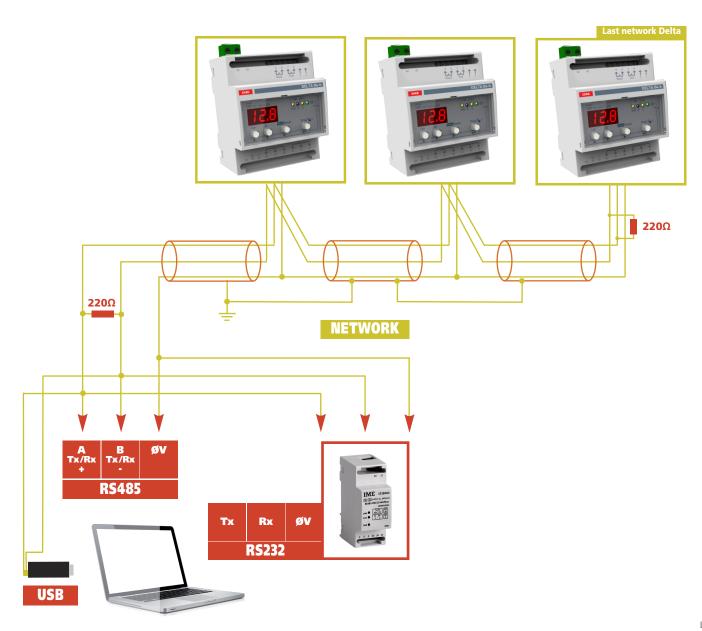
FLt Filter: OFF

RS485 Communication (where provided)

Add Address: 255

bAu Transmission speed: 9,6 Kbit/s

PAr Parity Bit: non none


tim Waiting time before answer: 3 ms

LE12570AA E 10/20 - 01IM cod.RDD421..

Example of networking

