TIMIE

A Group brand $\mathbf{L 7}$ legrand
BTicino SpA Viale Borri， 23121100 Varese－ITALY

米

Index

Time sensors
They detect the signals, where rise

Protection

Θ
They report anomalies in the system, protecting it
Wiring instructions page 3
Dimensions page 3
Wiring diagrams page 4
Ring current transformers page 5
Front frame description page 6
Setting
Intervention point selection page 7
Delay time selection page 7
Function selection page 7
State of relay selection page 7
Visual signaling page 8
Relay output position page 9
Adder ring current transformers Use page 10
Choice of the transformer page 10
Delta TCS ControllerUse with Delta TCS controllerpage 10

Wiring instructions

Mounting of this equipment must be carried out just by skilled personnel.
Please make sure that the data on the label (extra supply voltage, frequency, etc.) correspond to the network on which the meter must be connected.
In the wiring scrupulously respect the wiring diagram; an error in connection unavoidably leads to wrong measurements or damages to the device.

- Mounting position does not affect in any way the proper working
- Setting operations (intervention threshold, delay time, etc.) must be carried out with non-fed meter
- Scrupulously respect the wiring diagram; an error in connection unavoidably leads to wrong measurements or damages to the device
- The attainment of the full functionality for the differential protective system is related to the mounting mode. Therefore we suggest:
- To reduce as much as possible the distance between ring current transformer and differential relay
- For connection, to use shielded or braided cables
- To avoid placing the ring current transformer-differential relay connection cables in parallel with power conductors
- To avoid mounting ring current transformer and differential relay near sources of strong electromagnetic fields (big transformers)
- Just the active conductors cross the ring current transformer (drawing D1)
- Using a shielded cable, the armor must be grounded as per (drawing D2)
- The conductors must be placed in the middle of the ring current transformer (drawing D3)

Dimensions

D1

D2

$X=Y=Z$

Differental relays

Negative Security

Wiring diagrams

Negative Security

Positive Security

S 291/150

S 291/151

\square

Positive Security

Ring Current Transformers

Choice of the ring current transformer for differential relays series DELTA

depending on the minimum value of the leakage current to be detected and the diameter of the hole in which have to pass all the active conductors of the line to be protected.

Mounting with strong transient currents (max. 6In) according to IEC/EN 60947-2

 enclosure M.In order to avoid ill-timed interventions (caused by transient currents and not by real insulation defects), the standards provide for a test 6 times the rated current; for installations in conformity with what provided by the standard, you have to stick to the values shown in the table

Diameter: transformer inner hole diameter (passing cables/bars)
$\| \Delta \mathrm{n}$ min: min. I $\Delta \mathrm{n}$ value which can be loaded on the differential relay linked to the ring current transformer
In: switch or disconnector rated current
The shown values are valid only if the conductors are exactly passing in the middle of the ring current transformer

For plants with poor transient currents (<6/n) it is possible to use ring current transformers with lower rated currents, following this formula:
$\frac{\text { 6ln (value shown in the table) }}{\text { Is (rated current of used switch) }}=$ Max. allowed overload

Using a transformer DelA-310 (code TDAC2) with value 6In = 3780A with switch with rated current $\mathrm{ln}=\mathbf{1 2 5 0 A}$

```
3780A
1250A}=3,02
```

The highest admitted overload corresponds to 3,024 times the switch rated current

Ex. choice of the ring current transformer for switch rated current (In) = 125A
Respecting the parameters provided by the standard IEC/EN 60947-2 enclosure M. you have to use a transformer model Del-80 (code TDGC2)
Current In = 170A - Current $6 \mathrm{In}=1020 \mathrm{~A}$

Mode	Del-28	Del-35	Del-60	Del-80	De-110	Del-140	De-210	DelA-110	De\|A-150	DeA-310
Code	TDGA2	TDGB2	TDGH2	TDGC2	TDGD2	TDGE2	TDGF2	TDAA2	TDAB2	TDAC2
Diameter	28 mm	35 mm	60 mm	80 mm	110 mm	140 mm	210 mm	110 mm	150 mm	310 mm
I $\Delta \mathbf{n}$	0,03A			0,05A	0,1A	0,3A		0,5A		1A
In	65A	70A	90A	170A	250A		400A	250A		630A
61 n	390A	420A	540A	1020A	1500A		2400A	1500A		3780

Front Frame Description

* = LED signalling

*

Yellow LED's "20-30-40-50\%" = I $\|$ n instantaneous value
(in percentage of $I \Delta n$ value)

Setting

Intervention point selection

$\operatorname{In}(\mathrm{A})$	0,03	0,05	0,075	0,1	0,15	0,2	0,3
$\mathbf{x 1}$	30 mA	50 mA	75 mA	100 mA	150 mA	200 mA	300 mA
$\times 10$	300 mA	500 mA	750 mA	1 A	$1,5 \mathrm{~A}$	2 A	3 A
$\mathbf{x 1 0 0}$	3 A	5 A	$7,5 \mathrm{~A}$	10 A	15 A	20 A	30 A

Delay time selection

Adjusting range: 0 - 0,06-0,15-0,31-0,5-1-4,5s

Intervention threshold I $\Delta \mathbf{n}$	$0,03 \mathrm{~A}$	$0,05 \ldots 3 \mathrm{~A}$					
Loaded delay $\Delta \mathbf{t}(\mathbf{s})$	0 s	$0,06 \mathrm{~s}$	$0,15 \mathrm{~s}$	$0,31 \mathrm{~s}$	$0,5 \mathrm{~A}$	1 s	$4,5 \mathrm{~s}$
Non-intervention time @ 21$\Delta \mathbf{n}$		$0,06 \mathrm{~s}$	$0,15 \mathrm{~s}$	$0,31 \mathrm{~s}$	$0,5 \mathrm{~A}$	1 s	$4,5 \mathrm{~s}$
Max. delay @ $5 \mathbf{5 I} \Delta \mathbf{n}$	$0,03 \mathrm{~s}$	$0,13 \mathrm{~s}$	$0,28 \mathrm{~s}$	$0,44 \mathrm{~s}$	$0,7 \mathrm{~s}$	$1,8 \mathrm{~s}$	$5,5 \mathrm{~s}$

By selecting the intervention threshold on position 0,03, the intervention delay is automatically excluded, irrespective of the position of the range selector x1/x10/x100
To load the intervention threshold $I \Delta n=30 \mathrm{~mA}$ with instantaneous intervention, select 0,03 taking care that range selector is on position x 1 .

Function selection

Function Al. $\mathbf{2}$ = programmable alarm relay
Wiring diagram S291/144
Double throw SPDT output, terminals 17-18-19 / 60-61-62
Negative/conditional (normally de-energized relay) or positive/unconditional (normally energized relay) security selectable by $11 \mathrm{Nd}-\mathrm{Ne}$ dip-switch.

Function Al.50\% =programmable alarm relay + pre-alarm relay 50\% I Δ n selected. Wiring diagram s291/145 Pre-alarm relay AI.50\%: 1 SPDT contact, terminals 60-61-62 Negative/conditional (normally de-energized relay) security Alarm relay: 1 SPDT contact, terminals 17-18-19
Negative/conditional (normally de-energized relay) or positive/unconditional (normally energized relay) security selectable by $11 \mathrm{Nd}-\mathrm{Ne}$ dip-switch.

State of relay selection

Nd (normally de-energized)

Negative securaty failing the extra supply voltage, the output relay does not change its state.

Ne (normally energized)
Positive securaty failing the extra supply voltage, the output relay switches in alarm condition. The pre-alarm relay (AL50\%-AL-2 function) is always normally de-energized. Output relay contact range: 5A 250Vac $\cos \varphi 1-3 \mathrm{~A} 250 \mathrm{Vac} \cos \varphi 0,4-5 \mathrm{~A} 30 \mathrm{Vdc}$.

Test

By pressing Test key you can simulate the alarm condition, the LED turning on and the output relay switching.
At the moment of installation it is important to carry out a Test (with alarm relay release) to verify the proper working of the protection.

Test no trip

By pressing in sequence Reset then Test and keeping both pressed you can verify the proper working of the differential relay without provoking the output relay switching (with alarm relay release).

Reset (reset after alarm intervention)
The reset can be selected in manual or automatic mode..
Man (manual)
The state of alarm remains until the operator does not act on Reset key.
The reset is inhibited with continuous differential current > 50\% of loaded I $\Delta \mathrm{n}$
Aut (automatic)
When the alarm has occurred, the device automatically resets, making 10 attempts with different delays (see table).

After 30 minutes from reset, the attempt counter automatically resets.
The reset is inhibited with continuous differential current > 50\% of loaded I Δn

Attempts	Delay
1	30 s
2	1 min
3	2 min
4	4 min
5	8 min
6	16 min
7	32 min
8	64 min
9	128 min
10	256 min
7	

Differental relays

Visual signalling

)	\checkmark	\checkmark	\checkmark	\bigcirc	O		
On	20	30	40	50	Trip	Condition	
\bigcirc	O	O	O	O	O	Rest	No supply voltage or device out of order
O	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	Monitoring	Differential current < 20% of loaded $I \Delta n$ value
O	-	\bigcirc	\bigcirc	\bigcirc	-	Monitoring	Differential current 20% of loaded I In value
-	-	-	\bigcirc	-	-	Monitoring	Differential current 30% of loaded $I \Delta$ n value
-	\bigcirc	-	O	-	-	Monitoring	Differential current 40% of loaded $I \Delta$ n value
-	-	-	-	O	-	Monitoring	Differential current 50% of loaded I \triangle n value
O	\bigcirc	\bigcirc	-	\bigcirc	-	Monitoring	Differential current $>70 \%$ of loaded $I \Delta n$ value
O	-	-	-	,	O	Alarm	Differential current >\% of loaded $I \Delta n$ value
-	\bigcirc	\bigcirc	-	\bigcirc	-	Alarm Storage	Switch tripping, no differential current
-	-	-	O	\bigcirc	\bigcirc	Reset	Reset in absence of differential current (fault removal)
-	\bigcirc	-	\bigcirc	O	-	Alarm	Ring current transformer - differential relay connection breakdown
O	\bigcirc	\bigcirc	O	-	-	Test	Pressing of test key
-	-	-	-	O	O	Test no trip	Simultaneously pressing of Test + Reset keys Reset LED turning off or automatically after 30s

Relay output position

AL. 2				A 1.50			
Negative Security		Positive Security		Negative Security		Positive Security	
19-18-17	60-61-62	19-18-17	60-61-62	19-18-17	60-61-62	19-18-17	60-61-62
(1)(18)(1)	(6) (1) ${ }^{\text {(2) }}$	(19) 18 (11)	(6)(1) ${ }^{\text {(2) }}$	(19)(18)(1)	(0)(1)(2)	(19)(18)11)	(6)(1)(2)
(19)(8)(17)	(6) (1) ${ }^{\text {(2) }}$	(19)(1811)	(60) (1) 2	(1) (18)11)	(6) (1) 22	(19)(1)17)	(6)(1)(2)
(19)(181)	(6)(1)(2)	(19) 18 (1)	(6)(1)(2)	(19)(1811)	(0)(1)(2)	(19) 18 (11)	(6)(1)(2)
(1) (18)(17)	(6)(1)(2)	(1)18) 117	(60) (1) 2)	(1)(18)(17)	(60) (1) ${ }^{\text {a }}$	(19) (8) 117	(6) (1) 2 2
(1)(8)(1)	(6)(11)	(19)(181)	(6)(1) 2 2	(19) 18 (17)	(6) (1)	(19)(1817)	(60) (1) ${ }^{\text {(2) }}$
(1) (18) 117	(60) (1)	(19)(18)17	(60)162	(1)(18)(17)	(6) (1) ${ }^{\text {(2) }}$	(1)18) 117	(60) (2)
(19) (1811)	(6) (1) ${ }^{\text {a }}$	(1)18) 117	(6) (1) (2)	(19) (1817)	(60) (1) ${ }^{\text {(2) }}$	(1) (18) 117	(60) (1)
(19)1811)	(60) (1) 2	(1) (18) 11	(6)(1)(2)	(19)1817	(6)(1) 2 2	(1) (18) 11	(6)(1)
(1)18) 117	(6) (1) ${ }^{(2)}$	(19) (8)11)	(50)(1)	(19) (18) 11	(6)(1) ${ }^{2}$	(19) (8)17)	(60) (1) 2
(10) (8)17)	(50)(1) ${ }^{\text {a }}$	(1)18) 117	(6) (1) ${ }^{\text {2 }}$	(19)(1811)	(50) (1) 2)	(1)18)(17)	(60) (1) ${ }^{\text {2 }}$
(19)(18)11)	(6)(1) ${ }^{(2)}$	(19)(18)	(6) (1) (2)	(19) 18 (11)	(0)(1)(2)	(19) (1)17)	(6)(61)
(19)1811)	(60)1]	(1) (18)11)	(0) (12)	(19)(1811)	(6)(1) 2 ((1)(8)(1)	(0) (1)
(1) (18) (1)	(6)(6)(2)	(19) 18 (11)	(6) (1) (2)	(19) 18111	(0)(1)(2)	(19) (1)11)	(6)(1)(2)

Adder Ring Current Transformers

Use of adder ring current transformers
If insulation problems or with the dimensions of the cables/bars of the line to be protected don't allow to use ring current transformers (max. hole diameter 300 mm), it is possible to use measuring current transformers with 5A secondary winding and same primary currents, accuracy class 0,5 or 1 .

Choice of the adder ring current transformer
Transformer ratio: according to the used measuring current transformer ratio.
In case of connection with measuring current transformer with ratio higher than 400/5A the I Δ n intervention current values which can be selected on the differential relay are multiplied by 10.

CT 100...400A

\| 4 日 30mA, 30A

CT 500...5000A

Delta TCS Controller

Switch opening circuit controller with current launch coil, model Delta TCS
It guarantees the reliability of the differential protection by monitoring the efficiency of the release circuit of one or two current launch coil switches and signaling the opening circuit breakdown through alarm display (front LED) and output relay intervention. It can be used for all the applications which use the current launch coil circuit to control its efficiency (for instance safety circuits, acoustic and visual signaling of states of alarm, fire pumps, etc.)

