41 legrand ${ }^{\circ}$

Three-Sources Management System (T.S.M.S.)

Modbus instruction manual

4 legrand $^{\circ}$

Three-Sources Management System (T.S.M.S.)

EN ENGLISH

Index

1. Modbus ${ }^{\oplus}$ protocol 4
2. Parameters setting 4
3. Modbus ${ }^{\oplus}$ RTU protocol 5
4. Modbus ${ }^{\circledR}$ functions 6
4.1 Function 04: read input register 6
4.2 Function 06: preset single register 7
4.3 Function 07: read exception status 8
4.4 Function 16: preset multiple register 8
4.5 Function 17: report slave ID 9
4.6 Errors 9
4.7 CRC calculation (CHECKSUM for RTU) 10
5. Modbus ${ }^{\circledR}$ ASCII protocol 11
5.1 LRC calculation (CHECKSUM for ASCII) 11
6. Measures supplied by serial communication protocol 12
7. Status bits 17
8. Commands 21
9. Device global status 23
10. Real time clock 23
11. Event log reading 24
12. Parameter setting 25
12.1 Procedure for the reading of parameters 25
12.2 Procedure for the writing of parameters 25

1. Modbus ${ }^{\circledR}$ protocol

The Legrand 422684 three sources management system supports the communication protocols Modbus RTU and Modbus ASCII®.
Using this function, it is possible to read the device status and to control the units through Legrand Webservers offer, third-party supervision software (SCADA) or through other intelligent devices supporting Modbus ${ }^{\circledR}$, like PLCs.

2. Parameters setting

To configure the Modbus ${ }^{\circledR}$ protocol, enter SETUP MENU and choose the M10 menu to configure communication port.
MENU M10 - COMMUNICATION
Serial communication.

PAR	FUNCTION	DEFAULT	RANGE
P10.1.01	Node address	01	01-255
P10.1.02	Serial port speed	19200	$\begin{gathered} 1200 \\ 2400 \\ 4800 \\ 9600 \\ 19200 \\ 38400 \\ 57600 \\ 115200 \end{gathered}$
P10.1.03	Data format	8 bit - n	8 bit -no par. 8 bit, odd 8 bit, even 7 bit, odd 7 bit, even
P10.1.04	Stop bits	1	1-2
P10.1.05	Protocol	Modbus RTU	Modbus RTU Modbus ASCII

3. Modbus ${ }^{\circledR}$ RTU protocol

If one selects the Modbus ${ }^{\ominus}$ RTU protocol, the communication message has the following structure:

T1T2T3	Address (8 bit)	Function $(8 \mathrm{bit})$	Data $(\mathrm{N} \times 8 \mathrm{bit})$	CRC $(16 \mathrm{bit})$	T1T2T3

- The Address field holds the serial address of the slave destination device.
- The Function field holds the code of the function that must be executed by the slave.
- The Data field contains data sent to the slave or data received from the slave in response to a query.
- The maximum length for the data field is 8016 -bit registers (160 bytes)
- The CRC field allows the master and slave devices to check the message integrity. If a message has been corrupted by electrical noise or interference, the CRC field allows the devices to recognize the error and thereby to ignore the message.
- The T1 T2 T3 sequence corresponds to a time in which data must not be exchanged on the communication bus to allow the connected devices to recognize the end of one message and the beginning of another. This time must be at least 3.5 times the time required to send one character.

The device measures the time that elapses from the reception of one character and the following. If this time exceeds the time necessary to send 3.5 characters at the selected baud rate, then the next character will be considered as the first of a new message.

4. Modbus ${ }^{\circledR}$ functions

The available functions are:

$03 \boldsymbol{=}$ Read input register	Allows to read the device measures.
$\mathbf{0 4} \boldsymbol{=}$ Read input register	Allows to read the device measures.
$\mathbf{0 6}=$ Preset single register	Allows writing parameters
$\mathbf{0 7}=$ Read exception	Allows to read the device status
$\mathbf{1 0}=$ Preset multiple register	Allows writing several parameters
$\mathbf{1 7}=$ Report slave ID	Allows to read information about the device.

For instance, to read the number number of switching alarms of breaker 1, which resides at location 58 (3Ah), from the DEVICE with serial address 01 , the message to send is the following:

01	04	00	39	00	02	A1	C6

Where:
$01=$ slave address
$04=$ Modbus ${ }^{\circledR}$ function 'Read input register'
0039 = Address of the required register (number of switching alarms of breaker 1) decreased by one
$0002=$ Number of registers to be read beginning from address 22
A1 C6 = CRC Checksum

The DEVICE answer is the following:

01	04	04	00	00	00	$0 A$	$7 B$	83

Where:
01 = DEVICE address (Slave 01)
04 = Function requested by the master
04 = Number of bytes sent by the DEVICE
$000000 \mathrm{OA}=$ Hex value of number of switching alarms of breaker $1=10$
$7 B 83=$ CRC checksum

4.1 Function 04: read input register

The Modbus ${ }^{\ominus}$ function 04 allows to read one or more consecutive registers from the slave memory. The address of each measure is given in the table "Measures". As for Modbus ${ }^{\ominus}$ standard, the address in the query message must be decreased by one from the effective address reported in the table.
If the measure address is not included in the table or the number of requested registers exceeds the acceptable max number, the DEVICE will return an error code (see error table).

Master query:

Slave address	08 h
Function	04 h
MSB address	00 h
LSB address	0 Fh
MSB register number	00 h
LSB register number	08 h
LSB CRC	C1h
MSB CRC	56 h

In the above example, slave 08 is requested for 8 consecutive registers beginning with address 10 h . Thus, registers from 10 h to 17 h will be returned. As usual, the message ends with the CRC checksum.

Slave response:

Slave address	08 h
Function	04 h
Byte number	10 h
MSB register 10h	00 h
LSB register 10h	00 h
--	
MSB register 17h	00 h
LSB register 17h	00 h
LSB CRC	$8 A h$
MSB CRC	B1h

The response is always composed of the slave address, the function code requested by the master and the contents of the requested registers. The answer ends with the CRC.

4.2 Function 06: preset single register

This function allows to write in the registers. It can be used only with registers with address higher than 1000 h . For instance, it is possible to change setup parameters. If the value is not in the correct range, the DEVICE will answer with an error message. In the same way, if the parameter address is not recognised, the DEVICE will send an error response.
The address and the valid range for each parameter are indicated in Table "Commands".

Master message:

Slave address	08 h
Function	06 h
MSB address	2 Fh
LSB address	0 Fh
MSB register number	00 h
LSB register number	0 hh
LSB CRC	31 h
MSB CRC	83 h

Slave response:

The slave response is an echo to the query, that is the slave sends back to the master the address and the new value of the variable.

4 legrand $^{\circ}$

4. Modbus ${ }^{\circledR}$ functions

4.3 Function 07: read exception status

This function allows to read the status of the automatic transfer switch.

Master query:

Slave address	08 h
Function	07 h
LSB CRC	47 h
MSB CRC	B2h

Following table explains meaning of the answer bye sent by device:

BIT	MEANING
0	Operative mode OFF / Reset
1	Operative mode MAN
2	Operative mode AUT
3	Operative mode TEST
4	On error
5	AC power supply ok
6	DC power supply ok
7	Global alarm on

4.4 Function 16: preset multiple register

This function allows to modify multiple parameters with a single message, or to preset a value longer than one register.

Master message:Slave response:

Slave address	08 h
Function	10 h
MSB register address	20 h
LSB register address	01 h
MSB register number	00 h
LSB register number	02 h
Number of byte ((it is the double of the above)	04 h
MSB data	00 h
LSB data	00 h
MSB data	00 h
LSB data	00 h
LSB CRC	85 h
MSB CRC	3 Eh

Slave address	08 h
Function	10 h
MSB register address	20 h
LSB register address	01 h
MSB byte number	00 h
LSB byte number	02 h
LSB CRC	1 Bh
MSB CRC	51 h

4.5 Function 17: report slave ID

This function allows to identify the device type.

Master query:

Slave address	08 h
Function	11 h
LSB CRC	C6h
MSB CRC	7 Ch

Slave response:

Slave address	08 h
Function	11 h
Bytes counter	08 h
Data 01 (Type) ©	76 h
Dato 02 (software revision)	01 h
Dato 03 (hardware revision)	00 h
Dato 04 (parameters revision)	01 h
Data 05 (product type) ©	04 h
Dato 06 (reserved)	00 h
Dato 07 (reserved)	00 h
Dato 08 (reserved)	00 h
LSB CRC	B0h
MSB CRC	2 hh

(1) $118-76 \mathrm{~h}=422684$
(2) $4-04 \mathrm{~h}=$ TSMS series

4.6 Errors

In case the slave receives an incorrect message, it answers with a massage composed by the queried function ORed with 80 h , followed by an error code byte. In the following table are reported the error codes sent by the slave to the master:

CODE	ERROR
01	Invalid function
02	Invalid address
03	Parameter out of range
04	Function execution impossible
06	Slave busy, function momentarily not available

4 legrand $^{\circ}$

4. Modbus ${ }^{\circledR}$ functions

4.7 CRC calculation (CHECKSUM for RTU)

Example of CRC calculation:
Frame $=0207 \mathrm{~h}$

CRC initialization	1111	1111	1111	1111
Load the first byte	0000	0010		
Execute xor with the first Byte of the frame	1111	1111	1111	1101
Execute $1^{\text {st }}$ right shift	0111	1111	1111	11101
Carry=1, load polynomial	1010	0000	0000	0001
Execute xor with the polynomial	1101	1111	1111	1111
Execute $2^{\text {nd }}$ right shift	0110	1111	1111	11111
Carry=1, load polynomial	1010	0000	0000	0001
Execute xor with the polynomial	1100	1111	1111	1110
Execute $3^{\text {rd }}$ right shift	0110	0111	1111	11110
Execute $4^{\text {th }}$ right shift	0011	0011	1111	11111
Carry=1, load polynomial	1010	0000	0000	0001
Execute xor with the polynomial	1001	0011	1111	1110
Execute $5^{\text {th }}$ right shift	0100	1001	1111	11110
Execute $6^{\text {th }}$ right shift	0010	0100	1111	11111
Carry=1, load polynomial	1010	0000	0000	0001
Execute xor with the polynomial	1000	0100	1111	1110
Execute $7^{\text {th }}$ right shift	0100	0010	0111	11110
Execute $8^{\text {th }}$ right shift	0010	0001	0011	11111
Carry=1, load polynomial	1010	0000	0000	0001
Load the second byte of the frame	0000	0111		
Execute xor with the second byte of the frame	1000	0001	0011	1001
Execute $1^{\text {st }}$ right shift	0100	0000	1001	11001
Carry=1, load polynomial	1010	0000	0000	0001
Execute xor with the polynomial	1110	0000	1001	1101
Execute $2^{\text {nd }}$ right shift	0111	0000	0100	11101
Carry=1, load polynomial	1010	0000	0000	0001
Execute xor with the polynomial	1101	0000	0100	1111
Execute 3 ${ }^{\text {rd }}$ right shift	0110	1000	0010	01111
Carry=1, load polynomial	1010	0000	0000	0001
Execute xor with the polynomial	1100	1000	0010	0110
Execute 4th right shift	0110	0100	0001	00110
Execute $5^{\text {th }}$ right shift	0010	0100	0000	10011
Carry=1, load polynomial	1010	0000	0000	0001
Execute xor with the polynomial	1001	0010	0000	1000
Execute $6^{\text {th }}$ right shift	0100	1001	0000	01000
Execute $7^{\text {th }}$ right shift	0010	0100	1000	00100
Execute 8 ${ }^{\text {th }}$ right shift	0001	0010	0100	00010
CRC Result	$\begin{aligned} & 0001 \\ & 0100 \\ & \text { 12h } \end{aligned}$	0010 0001 41h		

Note: The byte 41 h is sent first(even if it is the LSB), then 12 h is sent.

5. Modbus ${ }^{\circledR}$ ASCII protocol

The Modbus ${ }^{\circledR}$ ASCII protocol is normally used in application that require to communicate through a couple of modems. The functions and addresses available are the same as for the RTU version, but the transmitted characters are in ASCII and the message end is delimited by Carriage return/ Line Feed instead of a transmission pause.
If one selects the parameter P10.n. 05 as Modbus ${ }^{\circledR}$ ASCII protocol, the communication message on the correspondent communication port has the following structure:

$:$	Address (2 chars)	Function (2 chars)	Dates (N chars)	LRC (2 chars)	CR LF

- The Address field holds the serial address of the slave destination device.
- The Function field holds the code of the function that must be executed by the slave.
- The Data field contains data sent to the slave or data received from the slave in response to a query.
- The LRC field allows the master and slave devices to check the message integrity. If a message has been corrupted by electrical noise or interference, the LRC field allows the devices to recognize the error and thereby ignore the message.
- The message terminates always with CRLF control character (OD OA).

5.1 LRC calculation (CHECKSUM for ASCII)

Example of LRC calculation:

Address	01	00000001
Function	04	00000100
Start address hi.	00	00000000
Start address lo.	00	00000000
Number of registers	08	00001000
	Sum	00001101
	1. complement	+1
	2. complement	11110010
		00000001
		F5

4 legrand $^{\circ}$

6. Measures supplied by serial communication protocol

To be used with functions 03 and 04 .

ADDRESS	WORDS	MEASURE	UNIT	FORMAT
02h	2	Voltage of line $1 \mathrm{L1} 1-\mathrm{N}$	V	Unsigned long
04h	2	Voltage of line 1 L2-N	V	Unsigned long
06h	2	Voltage of line 1 L3-N	V	Unsigned long
08h	2	Voltage of line 1 L1-L2	V	Unsigned long
OAh	2	Voltage of line 1 L2-L3	V	Unsigned long
OCh	2	Voltage of line 1 L3-L1	V	Unsigned long
OEh	2	Voltage of line $2 \mathrm{~L} 1-\mathrm{N}$	V	Unsigned long
10h	2	Voltage of line $2 \mathrm{~L} 2-\mathrm{N}$	V	Unsigned long
12h	2	Voltage of line $2 \mathrm{L3-N}$	V	Unsigned long
14h	2	Voltage of line 2 L1-L2	V	Unsigned long
16h	2	Voltage of line 2 L2-L3	V	Unsigned long
18h	2	Voltage of line 2 L3-L1	V	Unsigned long
1Ah	2	Frequency of line 1	Hz/10	Unsigned long
1Ch	2	Frequency of line 2	Hz/10	Unsigned long
1Eh	2	Battery voltage (DC power supply)	VDC / 10	Unsigned long
20h	2	Total operation time	5	Unsigned long
22h	2	Line 1 ok total time	5	Unsigned long
24h	2	Line 2 ok total time	5	Unsigned long
26h	2	Line 1 not ok total time	5	Unsigned long
28h	2	Line 2 not ok total time	5	Unsigned long
2Ah	2	Line 1 breaker closed total time	5	Unsigned long
2 Ch	2	Line 2 breaker closed total time	5	Unsigned long
2Eh	2	Breaker opened total time	s	Unsigned long
30h	2	(not used)	--	Unsigned long
32h	2	Number of operations of line 1 breaker in AUT	$n \mathrm{r}$	Unsigned long
34h	2	Number of operations of line 2 breaker in AUT	$n \mathrm{r}$	Unsigned long
36h	2	Number of operations of line 1 breaker in MAN	$n \mathrm{r}$	Unsigned long
38h	2	Number of operations of line 2 breaker in MAN	$n \mathrm{r}$	Unsigned long
3Ah	2	Number of switching alarms of breaker 1	$n \mathrm{r}$	Unsigned long
3Ch	2	Number of switching alarms of breaker 2	nr	Unsigned long
3Eh	2	(not used)	--	Unsigned long
50h	2	Minimum battery voltage	V	Unsigned long
52h	2	Maximum battery voltage	V	Unsigned long
54h	2	Maintenance hours line 1	$n \mathrm{r}$	Unsigned long

ADDRESS	WORDS	MEASURE	UNIT	FORMAT
56h	2	Maintenance hours line 2	nr	Unsigned long
58 h	2	Operations to the maintenance of the breaker 1	nr	Signed long
5Ah	2	Operations to the maintenance of the breaker 2	nr	Signed long
21C0h	1	OR of all limits	bits	Unsigned int
1D00h	2	Counter CNT 1	UM1	long
1D02h	2	Counter CNT 2	UM2	long
1D04h	2	Counter CNT 3	UM3	long
1D06h	2	Counter CNT 4	UM4	long
1D08h	2	Counter CNT 5	UM5	long
1D0Ah	2	Counter CNT 6	UM6	long
1D0Ch	2	Counter CNT 7	UM7	long
1D0Eh	2	Counter CNT 8	UM8	long
9Ah	2	Alarms ©	bits	Unsigned long
9Ch	2	Alarms 2	bits	Unsigned long

4 legrand $^{\circ}$

6. Measures supplied by serial communication protocol

(1) Reading the words starting at address 9Ah will return 32 bits with the following meaning:

BIT	CODE	ALARM
$\mathbf{0}$	A01	Battery voltage too low
$\mathbf{1}$	A02	Battery voltage too high
$\mathbf{2}$	A03	S.Q1 breaker timeout
$\mathbf{3}$	A04	S.Q2breaker timeout
$\mathbf{4}$	A05	S.Q3breaker timeout
$\mathbf{5}$	A06	Incorrect phase sequence Line S1
$\mathbf{6}$	A07	Incorrect phase sequence Line S2
$\mathbf{7}$	A08	Incorrect phase sequence Line S3
$\mathbf{8}$	A09	Load timeout not powered
$\mathbf{9}$	A10	Local battery charger failure
$\mathbf{1 0}$	A11	Genset battery charger 1 failure
$\mathbf{1 1}$	A12	Genset battery charger 2 failure
$\mathbf{1 2}$	A13	Genset battery charger 3 failure
$\mathbf{1 3}$	A14	Emergency
$\mathbf{1 4}$	A15	S.Q1breaker protection trip
$\mathbf{1 5}$	A16	S.Q2breaker protection trip
$\mathbf{1 6}$	A17	S.Q3 breaker protection trip
$\mathbf{1 7}$	A18	S.Q1 breaker withdrawn
$\mathbf{1 8}$	A19	S.Q2breaker withdrawn
$\mathbf{1 9}$	A20	S.Q3breaker withdrawn
$\mathbf{2 0}$	A21	S.Q1genset line not available
$\mathbf{2 1}$	A22	S.Q2genset line not available
$\mathbf{2 2}$	A23	S.Q3genset line not available
$\mathbf{2 3}$	A24	Maintenance hours S1
$\mathbf{2 4}$	A25	Maintenance hours S2
$\mathbf{2 5}$	A26	Maintenance hours S3
$\mathbf{2 6}$	A27	Maintenance operations S.Q1
$\mathbf{2 7}$	A28	Maintenance operations S.Q2
$\mathbf{2 8}$	A29	Maintenance operations S.Q3
$\mathbf{2 9}$	A30	Auxiliary voltage breaker alarm
$\mathbf{3 0}$	A31	Non-priority load breaker timeout
A32	Tie breaker QC1 timeout	

(2) Reading the words starting at address 9Ch will return 32 bits with the following meaning:

BIT	CODE	ALARM
0	A33	Tie breaker QC2 timeout
1	A34	NPL (Non-Priotity-Load) breaker protection trip
2	A35	QC1 tie breaker protection trip
3	A36	QC2 tie breaker protection trip
4	A37	NPL (Non-Priotity-Load) breaker withdrawn
5	A38	QC1 tie breaker withdrawn
6	A39	QC2 tie breaker withdrawn
7	UA1	User alarms
8	UA2	User alarms
9	UA3	User alarms
10	UA4	User alarms
11	UA5	User alarms
12	UA6	User alarms
13	UA7	User alarms
14	UA8	User alarms
15	-	(not used)
16	-	(not used)
17	-	(not used)
18	-	(not used)
19	-	(not used)
20	-	(not used)
21	-	(not used)
22	-	(not used)
23	-	(not used)
24	-	(not used)
25	-	(not used)
26	-	(not used)
27	-	(not used)
28	-	(not used)
29	-	(not used)
30	-	(not used)
31	-	(not used)

ADDRESS	WORDS	MEASURE	UNIT	FORMAT
80h	2	Voltage of line $3 \mathrm{L1}-\mathrm{N}$	V	Unsigned long
82h	2	Voltage of line $3 \mathrm{L2-N}$	V	Unsigned long
84h	2	Voltage of line $3 \mathrm{L3-N}$	V	Unsigned long
86h	2	Voltage of line 3 L1-L2	V	Unsigned long
88h	2	Voltage of line 3 L2-L3	V	Unsigned long
8Ah	2	Voltage of line 3 L3-L1	V	Unsigned long
8Ch	2	Frequency of line 3	Hz/10	Unsigned long
8Eh	2	Line 3 ok total time	h/3600	Unsigned long
90h	2	Line 3 not ok total time	h/3600	Unsigned long
92h	2	Line 3 breaker closed total time	h/3600	Unsigned long
94h	2	Number of operations of line 3 breaker in AUT	nr	Unsigned long
96h	2	Number of operations of line 3 breaker in MAN	$n \mathrm{r}$	Unsigned long
98h	2	Number of switching alarms of breaker 3	nr	Unsigned long
A6h	2	Maintenance hours line 3	h/3600	Unsigned long
A8h	2	Operations to the maintenance of the breaker 3	nr	Signed long
438h	2	Current line 1-11	A/10000	Signed long
43Ah	2	Current line 1-12	A/10000	Signed long
43Ch	2	Current line 1-13	A/10000	Signed long
43Eh	2	Current line 2-11	A/10000	Signed long
440h	2	Current line 2-12	A/10000	Signed long
442h	2	Current line $2-13$	A/10000	Signed long
444h	2	Current line 3-11	A/10000	Signed long
446h	2	Current line 3-12	A/10000	Signed long
448h	2	Current line 3-13	A/10000	Signed long
494h	2	Current line 1-In	A/10000	Signed long
49Ah	2	Current line 2 - In	A/10000	Signed long
4A0h	2	Current line 3 - In	A/10000	Signed long
44Ah	2	Active power Line 1-L1	kW/10000	Signed long
44Ch	2	Active power Line 1-L2	kW/10000	Signed long
44Eh	2	Active power Line 1-L3	kW/10000	Signed long
45Ch	2	Reactive power Line 1-L1	kVAr/10000	Signed long
45Eh	2	Reactive power Line 1-L2	kVAr/10000	Signed long
460h	2	Reactive power Line 1-L3	kVAr/10000	Signed long
46Eh	2	Apparent power Line 1-L1	kVA/10000	Signed long
470h	2	Apparent power Line 1-L2	kVA/10000	Signed long
472h	2	Apparent power Line 1-L3	kVA/10000	Signed long
480h	2	PF Line 1 - L1	/10000	Signed long
482h	2	PF Line 1-L2	/10000	Signed long
				continue

6. Measures supplied by serial communication protocol

ADDRESS	WORDS	MEASURE	UNIT	FORMAT
484h	2	PF Line 1 - L3	/10000	Signed long
450h	2	Active power Line 2-L1	kW/10000	Signed long
452h	2	Active power Line 2 - L2	kW/10000	Signed long
454h	2	Active power Line 2 - L3	kW/10000	Signed long
462h	2	Reactive power Line 2 - L1	kVAr/10000	Signed long
464h	2	Reactive power Line 2 - L2	kVAr/10000	Signed long
466h	2	Reactive power Line 2 - L3	kVAr/10000	Signed long
474h	2	Apparent power Line 2-L1	kVA/10000	Signed long
476h	2	Apparent power Line 2-L2	kVA/10000	Signed long
478h	2	Apparent power Line 2-L3	kVA/10000	Signed long
486h	2	PF Line 2 - L1	/10000	Signed long
488h	2	PF Line 2-L2	/10000	Signed long
48Ah	2	PF Line 2 - L3	/10000	Signed long
456h	2	Active power Line 3-L1	kW/10000	Signed long
458h	2	Active power Line 3-L2	kW/10000	Signed long
45Ah	2	Active power Line 3-L3	kW/10000	Signed long
468h	2	Reactive power Line 3-L1	kVAr/10000	Signed long
46Ah	2	Reactive power Line 3-L2	kVAr/10000	Signed long
46Ch	2	Reactive power Line 3-L3	kVAr/10000	Signed long
47Ah	2	Apparent power Line 3-L1	kVA/10000	Signed long
47Ch	2	Apparent power Line 3-L2	kVA/10000	Signed long
47Eh	2	Apparent power Line 3-L3	kVA/10000	Signed long
48Ch	2	PF Line 3 - L1	/10000	Signed long
48Eh	2	PF Line 3-L2	/10000	Signed long
490h	2	PF Line 3-L3	/10000	Signed long
4A4h	2	Total active power Line 1	kW/10000	Signed long
4Aah	2	Total active power Line 2	kW/10000	Signed long
4B0h	2	Total active power Line 3	kW/10000	Signed long
4A6h	2	Total reactive power Line 1	kVAr/10000	Signed long
4ACh	2	Total reactive power Line 2	kVAr/10000	Signed long
4B2h	2	Total reactive power Line 3	kVAr/10000	Signed long
4A8h	2	Total apparent power Line 1	kVA/10000	Signed long
4AEh	2	Total apparent power Line 2	kVA/10000	Signed long
4B4h	2	Total apparent power Line 3	kVA/10000	Signed long
492h	2	PFT Line 1	/10000	Signed long
498h	2	PFT Line 2	/10000	Signed long
49Eh	2	PFT Line 3	/10000	Signed long

7. Status bits

To be used with functions 03 and 04 .

ADDRESS	WORDS		FUNCTION
2070 h	1	Front panel keyboard status ©	Unsigned integer
2100 h	2	Digital inputs status (by pin) ©	Unsigned integer
2140 h	2	Digital outputs status (by pin) ©	Unsigned integer
2074 h	1	Line 1 voltage status 4	Unsigned integer
2075 h	1	Line 1 breaker status ©	Unsigned integer
2176 h	1	Line 2 voltage status 4	Unsigned integer
2177 h	1	Line 2 breaker status ©	Unsigned integer
2083 h	1	Line 3 voltage status 4	Unsigned integer
2084 h	1	Line 3 breaker status ©	Unsigned integer
2078 h	2	Input function status ©	Unsigned integer
207 Ah	1	Output function status ©	Unsigned integer
207 Bh	1	Display messages status ©	Unsigned integer
207 Ch	1	Controller general status ©	Unsigned integer
207 Eh	1	Frontal LED status	Unsigned integer
207 Fh	1	Frontal LED status	Unsigned integer
2085 h	1	Display massages	Unsigned integer

(1) Following table shows meaning of bits of the word at address 2070h:

BIT	KEY
$\mathbf{0}$	UP
$\mathbf{1}$	OFF/RESET
$\mathbf{2}$	MAN
$\mathbf{3}$	DOWN
$\mathbf{4}$	AUT/ENTER
$\mathbf{5 . . . 1 5}$	Not used

4 legrand $^{\circ}$

7. Status bits

(2) Following table shows meaning of bits of the word at address 2100h:

BIT	INPUT
$\mathbf{0}$	Input 1
$\mathbf{1}$	Input 2
$\mathbf{2}$	Input 3
$\mathbf{3}$	Input 4
$\mathbf{4}$	Input 5
$\mathbf{5}$	Input 6
$\mathbf{6}$	Input 7
$\mathbf{7}$	Input 8
$\mathbf{8}$	Input 9
$\mathbf{9}$	Input 10
$\mathbf{1 0}$	Input 11
$\mathbf{1 1}$	Input 12
$\mathbf{1 2}$	Input 13
$\mathbf{1 3}$	Input 14
$\mathbf{1 4}$	Input 15
$\mathbf{1 5}$	Input 16
$\mathbf{1 6}$	Input 17
$\mathbf{1 7}$	Input 18
$\mathbf{1 8}$	Input 19
$\mathbf{1 9}$	Input 20
$\mathbf{y y y}$	

(3) Following table shows meaning of bits of the word at address 2140h:

BIT	OUTPUT
$\mathbf{0}$	Output 1
$\mathbf{1}$	Output 2
$\mathbf{2}$	Output 3
$\mathbf{3}$	Output 4
$\mathbf{4}$	Output 5
$\mathbf{5}$	Output 6
$\mathbf{6}$	Output 7
$\mathbf{7}$	Output 8
$\mathbf{8}$	Output 9
$\mathbf{9}$	Output 10
$\mathbf{1 0}$	Output 11
$\mathbf{1 1}$	Output 12
$\mathbf{1 2}$	Output 13
$\mathbf{1 3}$	Output 14
$\mathbf{1 4}$	Output 15
$\mathbf{1 5}$	Output 16
$\mathbf{1 6}$	Output 17
$\mathbf{1 7}$	Output 18
$\mathbf{1 8}$	Output 19
$\mathbf{1 9}$	Output 20
$\mathbf{2 0 . 3 1}$	Not used
$\mathbf{1 9}$	

4 Following table shows meaning of bits of the word at address 2074h (Line 1), 2176h (Line 2) or 2083h (line 3):

BIT	LINE STATUS
$\mathbf{0}$	Line values into limits
$\mathbf{1}$	Line values into limits delayed
$\mathbf{2}$	Voltage into limits
$\mathbf{3}$	Voltage ok
$\mathbf{4}$	Frequency into limits
$\mathbf{5}$	Frequency ok
$\mathbf{6}$	Voltage below min
$\mathbf{7}$	Voltage above max
$\mathbf{8}$	Voltage asymmetry
$\mathbf{9}$	Voltage phase loss
$\mathbf{1 0}$	Frequency below min
$\mathbf{1 1}$	Frequency above max
$\mathbf{1 2}$	Wrong phase sequence
$\mathbf{1 3}$	All line parameters ok
$\mathbf{1 4 - 1 5}$	Not used

(5) Following table shows meaning of bits of the word at address 2075h (Line 1) and 2177h (Line 2):

BIT	BREAKER STATUS
$\mathbf{0}$	Breaker closed
$\mathbf{1}$	Trip alarm
$\mathbf{2}$	Withdrawn alarm
$\mathbf{3}$	Command status ($1=$ close $)$
$\mathbf{4}$	Close command output
$\mathbf{5}$	Open command output
$\mathbf{6 \ldots 1 5}$	Not used

(6) Following table shows meaning of bits of the word at address 2178h:

BIT	INPUT FUNCTIONS STATUS
$\mathbf{0}$	Line 1 breaker closed feedback
$\mathbf{1}$	Line 1 breaker trip
$\mathbf{2}$	Not used
$\mathbf{3}$	Line 2 breaker closed feedback
$\mathbf{4}$	Line 2 breaker trip
$\mathbf{5}$	Not used
$\mathbf{6}$	Transfer to secondary line
$\mathbf{7}$	Inhibit return to main line
$\mathbf{8}$	Emergency pushbutton
$\mathbf{9}$	Generator start
$\mathbf{1 0}$	Generator 1 ready
$\mathbf{1 1}$	Generator 2 ready
$\mathbf{1 2}$	Keyboard locked
$\mathbf{1 3}$	Lock parameters
$\mathbf{1 4}$	Not used
$\mathbf{1 5}$	Alarms inhibited

Following table shows meaning of bits of the word at address 207Ah:

BIT	OUTPUT FUNCTIONS STATUS
$\mathbf{0}$	Line 1 breaker open
$\mathbf{1}$	Line 1 breaker close
$\mathbf{2}$	Line 2 breaker open
$\mathbf{3}$	Line 2 breaker close
$\mathbf{4}$	Global alarm
$\mathbf{5}$	Generator 1 start
$\mathbf{6}$	Generator 2 start
$\mathbf{7}$	Device ready
$\mathbf{8}$	Load shed
$\mathbf{9}$	Not used
$\mathbf{1 0}$	Not used
$\mathbf{1 1}$	Open all
$\mathbf{1 2}$	Undervoltage coil 1
$\mathbf{1 3}$	Undervoltage coil 2
$\mathbf{1 4}$	Line 1 OK
$\mathbf{1 5}$	Line 2 OK

4 legrand $^{\circ}$

7. Status bits

8 Following table shows meaning of bits of the word at address 207Bh:

BIT	DISPLAY MESSAGE STATUS
$\mathbf{0}$	Generator 1 start
$\mathbf{1}$	Generator 2 start
$\mathbf{2}$	Generator 1 cooling
$\mathbf{3}$	Generator 2 cooling
$\mathbf{4}$	Load transfer $2 \rightarrow 1$
$\mathbf{5}$	Load transfer $1 \rightarrow 2$

9 Following table shows meaning of bits of the word at address 207Ch:

BIT	OUTPUT FUNCTIONS STATUS
$\mathbf{0}$	Operative mode OFF / Reset
$\mathbf{1}$	Operative mode MAN
$\mathbf{2}$	Operative mode AUT
$\mathbf{3}$	Operative mode TEST
$\mathbf{4}$	Error on
$\mathbf{5}$	AC power supply present
$\mathbf{6}$	DC power supply present
$\mathbf{7}$	Global alarm on
$\mathbf{8 . . . 1 5}$	Not used

8. Commands

To be used with function 06 .

ADDRESS	WORDS	STATUS
4 FOOH	1	Set remote variable REM1 (1)
4 F 01 H	1	Set remote variable REM2
......		
4F07H	1	Set remote variable REM8
2 FOOH	1	Operative mode change (2)
2FOAH	1	Front panel keystorke simulation (3)
2F03H	1	Value 01h: Memory save
		Value 04h: reboot
		Value 00h: Reset device
		Value 01h: Reset device and save memory
2FFOH	1	Command menu execution 4
28FAH	1	Value 01H: Save real time clock setting

(1) Writing AAh to the indicated address the remote variable will be set to 1 , writing BBh the remote variable will be set to 0 .
(2) The following table shows the values to be written to address 2F00h to achieve the correspondent function.

VALUE	FUNCTION
$\mathbf{0}$	Switch to OFF mode
$\mathbf{1}$	Switch to MAN mode
$\mathbf{2}$	Switch to AUT mode

(3) The following table shows the bit position of the value to be written to address 2FOAh to achieve the correspondent function.

BIT	MEANING
$\mathbf{0}$	Key up
$\mathbf{1}$	MAN mode
$\mathbf{2}$	Key right
$\mathbf{3}$	START
$\mathbf{4}$	TEST mode
$\mathbf{5}$	OFF mode
$\mathbf{6}$	AUT mode
$\mathbf{7}$	STOP mode

4 legrand ${ }^{\circ}$

8. Commands

(4) Writing value between 0 and 15 to the indicated address, the correspondent command will be executed:

	MEANING
$\mathbf{0}$	Reset maintenance 1
$\mathbf{1}$	Reset maintenance 2
$\mathbf{2}$	Reset maintenance operations 1
$\mathbf{3}$	Reset maintenance operations 2
$\mathbf{4}$	Reset generic counters CNTx
$\mathbf{5}$	Reset LIMx limits
$\mathbf{6}$	Reset hours counter line 1/line 2
$\mathbf{7}$	Reset hours counter S.Q1/ S.Q2
$\mathbf{8}$	Reset breaker operation
$\mathbf{9}$	Reset events list
$\mathbf{1 0}$	Reset default parameters
$\mathbf{1 1}$	Save parameters in backup memory
$\mathbf{1 2}$	Reload parameters from backup memory
$\mathbf{1 3}$	Forced I/O
$\mathbf{1 4}$	Reset A03 - A04 alarms
$\mathbf{1 5}$	Simulate line failure

9. Device global status

To be used with function 03 e 04 .

ADDRESS	WORDS	STATUS	FORMAT
2210 H	2	Device global status (bit 0-bit31 2	Unsigned integer

Reading two words at address 2210 H will return 32 bits with the following meaning:

BIT	MEANING
$\mathbf{0}$	Device OFF
$\mathbf{1}$	Device in MAN mode
$\mathbf{2}$	Device in AUT mode
$\mathbf{3}$	Device TEST mode
$\mathbf{4}$	Voltage Line 1 OK
$\mathbf{5}$	Voltage Line 2 OK
$\mathbf{6}$	Voltage Line 3 OK
$\mathbf{7}$	Global alarm A
$\mathbf{8}$	Global alarm B
$\mathbf{9}$	Automatic test line 1 in progress
$\mathbf{1 0}$	Automatic test line 2 in progress
$\mathbf{1 1}$	Automatic test line 3 in progress
$\mathbf{1 2}$	Remote control
$\mathbf{1 3}$	Clock 100 msec
$\mathbf{1 4 . . . 3 1}$	(not used)

10. Real time clock

To be used with functions 04 and 06 .
To make effective the changes, store them using the dedicated command.

ADDRESS	WORDS	FUNCTION	RANGE
28 FOH	1	Year	$2000 . .2099$
28 F 1 H	1	Month	$1-12$
28 F 2 H	1	Day	$1-31$
28 F 3 H	1	Hours	$0-23$
28 F 4 H	1	Minutes	$0-59$
28 F 5 H	1	Seconds	$0-59$

4 legrand ${ }^{\circ}$

11. Event log reading

To read the events must do the following:

1. Perform the read of 1 register by using the function $\mathbf{4}$ at address $\mathbf{5 0 3 0} \mathbf{H}$, the most significant byte (msb) indicates how many events are stored (value between 0 to 100), the least significant byte (lsb) is incremented each time an event is saved (value between 0 to 100). Once stored the 100 events the msb will remain at 100 while the Isb will back to zero and after will continue to increase.
2. Set the index of the event that you want to read (less than the maximum number of events stored), to do this you perform the function $\mathbf{6}$ at $\mathbf{5 0 3 0 H}$, specifying which event read.
3. Perform a read of 43 registers (with a single function 4) at address 5032H.
4. The value returned is a string of 86 ASCII characters, showing the same event description device visible on the display. The index of the event to be read is incremented automatically after a reading of the register $\mathbf{5 0 3 2 H}$, in order to speed up the download of events.
5. If you want to read the next event performing step 4, if you want to read any other event do step 3 .

EXAMPLE

Step 1: Reading events stored.
MASTER Function $=4(04 \mathrm{H})$
Address $=5030 \mathrm{H}(5030 \mathrm{H}-0001 \mathrm{H}=502 \mathrm{FH})$
Nr. registers $=1(01 \mathrm{H})$

01	04	50	2 F	00	01	11	03

DEVICE Function = 4
Nr. bytes. $=1 \quad(01 \mathrm{H})$
MSB $=100(64 \mathrm{H})$
LSB $=2$ (02H)

01	04	02	64	42	13	C 1

Step 2: Set the index of the event to read.
MASTER Function $=6(06 \mathrm{H})$
Address $=5030 \mathrm{H}(5030 \mathrm{H}-0001 \mathrm{H}=502 \mathrm{FH})$
Value $=1(01 \mathrm{H})$

01	06	50	2 F	00	01	68	C 3

DEVICE Function $=6$
Address $=5030 \mathrm{H}(5030 \mathrm{H}-0001 \mathrm{H}=502 \mathrm{FH})$
Value $=1(01 \mathrm{H})$

01	06	50	2 F	00	01	68	C 3

Step 3: Read the event.
MASTER Function $=4(04 \mathrm{H})$
Address $=5032 \mathrm{H}(5032 \mathrm{H}-0001 \mathrm{H}=5031 \mathrm{H})$
Nr . registers $=43$ (2BH)

01	04	50	31	00	$2 B$	$F 0$	$D A$

DEVICE Function $=4(04 \mathrm{H})$
Address $=5030 \mathrm{H}(5030 \mathrm{H}-0001 \mathrm{H}=502 \mathrm{FH})$
Nr . bytes $=86(56 \mathrm{H})$
String $=2012 / 07 / 18 ; 09: 34: 52 ; E 1100$, CHANGE MODE TO OFF

01	04	56	32	30	31	30	2 F	30	31	2 F	30	31	3 B	30	30	3 A	31	34	3 A
30	31	3 B	45	30															

12. Parameter setting

Using the Modbus ${ }^{\circledR}$ protocol it is possible to access the menu parameters.
To correctly understand the correspondence between the numeric value and the selected function and/or the unit of measure, please see the device operating manual.

12.1 Procedure for the reading of parameters

1. Write the value of the menu that you want to read by using the function $\mathbf{6}$ at address $\mathbf{5 0 0 0 H}$ (1).
2. Write the value of the submenu (if it is present) that you want to read by using the function 6 at address $\mathbf{5 0 0 1 H}$ (1).
3. Write the value of the parameter that you want to read by using the function $\mathbf{6}$ at address $\mathbf{5 0 0 2 H}$ (1).
4. Perform the function $\mathbf{4}$ at the address $\mathbf{5 0 0 4 H}$, with a number of registers appropriate to the length of the parameter (see table).
5. If you want to read the next parameter (in the same menu/submenu) repeat step 4, otherwise perform step 1 .

12.2 Procedure for the writing of parameters

1. Write the value of the menu that you want to change by using the function 6 at address $\mathbf{5 0 0 0 H}(1)$.
2. Write the value of the submenu (if it is present) that you want to change by using the function $\mathbf{6}$ at address $\mathbf{5 0 0 1} \mathbf{H}$ (1).
3. Write the value of the parameter that you want to change by using the function $\mathbf{6}$ at address $\mathbf{5 0 0 1} \mathbf{H} \mathbf{1}$.
4. Perform the function $\mathbf{1 6}$ at address $\mathbf{5 0 0 4 H}$, with a number of registers appropriate to the length of the parameter
5. If you want to write the next parameter, in the same menu / submenu repeat step 4 , otherwise perform step 1 , if you do not have to write additional parameters go to step 6.
6. To make effective the changes made to setup parameters it is necessary to store the values in EEPROM, using the dedicated command described in table "Status bits" (write value 4 by using function 6 at address 2F03H)

TYPE OF PARAMETER	NUMBER OF REGISTER
Text length 6 characters (ex. M14.0x.06)	3 registers (6 byte)
Text length 16 characters (ex. M14.0x.05)	8 registers (16 byte)
Text length 20 characters (ex. M15.0x.03)	10 registers (20 byte)
Abs(Numeric value) < 32768 (ex M01.05)	1 registers (2 byte)
Abs(Numeric value) > 32768 (ex M12.01)	2 registers (4 byte)

(1) It's 'possible to read the menu, submenus, and parameter stored at the addresses $\mathbf{5 0 0 0 H}, \mathbf{5 0 0 1 H}$ and $\mathbf{5 0 0 2 H}$ by using the function 4.

EXAMPLE

Set to 8 the value of parameter M08.01.01.
Step 1: Set menu 08.
MASTER Function $=6$
Address $=5000 \mathrm{H}(5000 \mathrm{H}-0001 \mathrm{H}=4$ FFFH $)$
Value $=8(08 \mathrm{H})$

01	06	$4 F$	$F F$	00	08	$A E$	$E 8$

DEVICE Function $=6$
Address $=5000 \mathrm{H}(000 \mathrm{H}-0001 \mathrm{H}=4$ FFFH $)$
Value $=8(08 \mathrm{H})$

01	06	$4 F$	$F F$	00	08	$A E$	E8

4 legrand $^{\circ}$

12. Parameter setting

Step 2: Set submenu 01.
MASTER Function $=6$
Address $=5001 \mathrm{H}(5001 \mathrm{H}-0001 \mathrm{H}=5000 \mathrm{H})$
Value $=1(01 \mathrm{H})$

01	06	50	00	00	01	59	$0 A$

DEVICE Function = 6
Address $=5001 \mathrm{H}(5001 \mathrm{H}-0001 \mathrm{H}=5000 \mathrm{H})$
Value $=1$ (01H)

01	06	50	00	00	01	59	$0 A$

Step 3: Set parameter 01.
MASTER Function =6
Address $=5002 \mathrm{H}(5002 \mathrm{H}-0001 \mathrm{H}=5001 \mathrm{H})$ Value $=1(01 \mathrm{H})$

01	06	50	01	00	01	08	CA

DEVICE Function $=6$
Address $=5002 \mathrm{H}(5002 \mathrm{H}-0001 \mathrm{H}=5001 \mathrm{H})$
Value $=1(02 \mathrm{H})$

01	06	50	01	00	01	08	$C A$

Step 4: Set value 8.
MASTER Function $=16(10 \mathrm{H})$
Address $=5004 \mathrm{H}(5004 \mathrm{H}-0001 \mathrm{H}=5003 \mathrm{H})$
Nr . register $=1(01 \mathrm{H})$
Nr. bytes $=2(02 \mathrm{H})$
Value $=8(0008 \mathrm{H})$

01	10	50	03	00	02	04	00	00	00	08	4 E	7 F

DEVICE Function $=16(10 \mathrm{H})$
Address $=5004 \mathrm{H}(5004 \mathrm{H}-0001 \mathrm{H}=5003 \mathrm{H})$
Value $=2(02 \mathrm{H})$

01	10	50	03	00	02	$\mathrm{A0}$	C 8

Step 6: Save and reboot.
MASTER Function $=6(06 \mathrm{H})$
Address $=2 \mathrm{~F} 03 \mathrm{H}(2 \mathrm{~F} 03 \mathrm{H}-0001 \mathrm{H}=2 \mathrm{~F} 02 \mathrm{H})$
Value $=4(04 \mathrm{H})$

01	6	$2 F$	02	00	04	21	$1 D$

DEVICE No answer.

51 legrand

LEGRAND

Pro and Consumer Service
BP 30076-87002
LIMOGES CEDEX FRANCE
www.legrand.com

Installer stamp

