Phone :+33 0555068787 - Fax :+33 0555068888

DPX ${ }^{3} 1600$ S10 electronic

 (display version) circuit breakersReference(s) :
from 422900 to 4229 15;
from 422920 to 4229 53; from 422955 to 4229 58;
from 422960 to 422993 ; from 422995 to 422998

1. USE

DPX ${ }^{3}$ platform, for premium segment, is able to cover extended ranges in terms of breaking capacities and rated currents, make protection suitable for different levels of power involved in installations.

DPX ${ }^{3}$ platform provide easy assembly procedures during the phase of installation and mounting of accessories, suitable for professional use. $\mathrm{DPX}^{3} \mathrm{~S} 10$ is a modern approach for electronic protection units that magnifies all flexibility allowed by technology.

2. RANGE

DPX3 1600 S10

	DPX ${ }^{3} 1600$ S10			
	36kA		50kA	
$\mathrm{I}_{\mathrm{n}}(\mathrm{A})$	3P	4P	3P	4P
500	422900	422901	422902	422903
630	422920	422925	422930	422935
800	422921	422926	422931	422936
1000	422922	422927	422932	422937
1250	422923	422928	422933	422938
1600	422924	422929	422934	422939
	70kA		100kA	
$\mathrm{I}_{\mathrm{n}}(\mathrm{A})$	3P	4P	3P	4P
500	422904	422905	422906	422907
630	422940	422945	422950	422955
800	422941	422946	422951	422956
1000	422942	422947	422952	422957
1250	422943	422948	422953	422958
1600	422944	422949	-	-

DPX3 1600 S10 with measurement function

	DPX ${ }^{3} 1600$ S10 +measurement function			
	36kA		50kA	
$\mathrm{I}_{\mathrm{n}}(\mathrm{A})$	3P	4P	3P	4P
500	422908	422909	422910	422911
630	422960	422965	422970	422975
800	422961	422966	422971	422976
1000	422962	422967	422972	422977
1250	422963	422968	422973	422978
1600	422964	422969	422974	422979
	70kA		100kA	
$\mathrm{I}_{\mathrm{n}}(\mathrm{A})$	3P	4P	3P	4P
500	422912	422913	422914	422915
630	422980	422985	422990	422995
800	422981	422986	422991	422996
1000	422982	422987	422992	422997
1250	422983	422988	422993	422998
1600	422984	422989	-	-

CONTENTS	PAGES
1. USE	1
2. RANGE	1
3. DIMENSIONS AND WEIGHTS	1
4. OVERVIEW	2
5. ELECTRICAL CONNECTIONS	2
6. ELECTR. AND MECH. CHARACTERISTICS	4
7. ELECTRONIC PROTECTION S10	6
8. CONFORMITY	8
9. EQUIPMENTS AND ACCESSORIES	9
10. CURVES	12

3. DIMENSIONS AND WEIGHTS

3.1 Dimensions

Implantation

DPX ${ }^{3} 1600$ S10 electronic
(display version) circuit breakers

Front terminals, fixed version

Reference(s) :
from 422900 to 4229 15;
from 422920 to 4229 53; from 422955 to 4229 58; from 422960 to 422993 ; from 422995 to 422998

Draw-out version, rear terminals

3.2 Weights

	Weights (Kg)			
Configuration	3P		4P	
	$\mathrm{I}_{\mathrm{n}} \leq 1250 \mathrm{~A}$	$\mathrm{I}_{\mathrm{n}}=1600 \mathrm{~A}$	$\mathrm{I}_{\mathrm{n}} \leq 1250 \mathrm{~A}$	$\mathrm{I}_{\mathrm{n}}=1600 \mathrm{~A}$
Circuit breaker (fixed version)	16	17	20	21.5
Draw-out base (with front terminals)*	18	18	22	22
Draw-out base (with rear terminals)*	21.7	21.7	26.2	26.2
Draw-out debro-lift mechanism*	9.9	9.9	11.2	11.2
*to add to fixed version				

4. OVERVIEW

4.1 Supplied with:

- fixing screws (4 for 3P and 4P)
- \quad screws for connections (6 for $3 P$ and 8 for $4 P$)
- \quad phase insulators (2 for 3 P and 3 for 4 P)

5. ELECTRICAL CONNECTIONS

5.1 Mounting possibilities

On plate:

- Vertical
- Horizonta
- Supply invertor type

DPX ${ }^{3} 1600$ S10 electronic
(display version) circuit breakers
from 422920 to 4229 53; from 422955 to 4229 58;
from 422960 to 4229 93; from 422995 to 422998

5.2 Mounting

(see instruction sheet for detailed mounting procedures)

Busbars/cable lugs:

DPX³ 1600 S10 electronic (display version) circuit breakers

Reference(s) :
from 422900 to 4229 15;
from 422920 to 4229 53; from 422955 to 4229 58;
from 422960 to 422993 ; from 422995 to 422998

6. ELECTRICAL AND MECHANICAL CHARACTERISTICS

Circuit Breaker	DPX ${ }^{3} 1600$ S10 F/N/H/L (36kA, 50kA, 70kA, 100kA)
Rated current (A)	500, 630, 800, 1000, 1250, 1600
Poles	3-4
Pole pitch (mm)	10-mar
Rated insulation voltage ($50 / 60 \mathrm{~Hz}$) $\mathrm{U}_{\mathrm{i}}(\mathrm{V})$	1000
Rated operating voltage ($50 / 60 \mathrm{~Hz}$) $\mathrm{U}_{\text {e }}(\mathrm{V})$	690
Rated impulse withstand current $\mathrm{U}_{\mathrm{Imp}}$	8
Rated frequency (Hz)	50-60
Operating temperature (${ }^{\circ} \mathrm{C}$)	-25 - 70
Mechanical endurance (cycles)	10000
Mechanical endurance with motor control	5000
Electrical endurance at I_{n} (cycles)	4000
Electrical endurance at $0.5 \mathrm{I}_{\mathrm{n}}$ (cycles)	8000
Utilization category	B
Suitable for isolation	Yes
Type of protection	Electronic (with display)
Thermal type protection	Adjustable (Mem On/Off)
Ability to enable thermal protection	On/Off
Thermal adjustment $\mathrm{I}_{\mathrm{r}}\left[\mathrm{X} \mathrm{I}_{\mathrm{n}}\right]$	0,2<1 (steps 1A)
Thermal adjustment t_{r} [s]	0,04*30 (steps 40ms, @6Ir)
Thermal time tripping at $2 \times \ln$ (single pole) [s]	0,44s $\pm 20 \%$ if tr = 0,04s@6Ir
Magnetic type protection	Adjustable
Ability to enable magnetic protection	On/Off
Magnetic adjustment $\mathrm{I}_{\text {sd }}\left[\mathrm{X} \mathrm{I}_{\mathrm{r}}\right.$]	1,5*10 (steps 1A)
Time adjustement $\mathrm{t}_{\text {sd }}\left(\mathrm{t}=\mathrm{k} \circ \mathrm{l}^{2} \mathrm{t}=\mathrm{k}\right.$) [s]	40*480 (steps 40ms)
Minimum release single pole	$1 \mathrm{Isd}^{\text {sd }}$
Istantaneous electronic adjustment I_{1}	$2 \div 15$ (steps 1 A) \& $\mathrm{lsf}=15 \mathrm{kA}$ (@In<=1250A) and $s f=20 \mathrm{kA}$ (@ln<=1600A)
Neutral protection for $4 \mathrm{P}\left(\% \mathrm{I}_{\mathrm{th}}\right.$ of phase pole)	OFF-50-100-150-200
Earth leakage trip type	Internal
Ability to enable earth leakage trip	On/Off
Earth leakage trip $1 \Delta n / I_{g}[\mathrm{~A} / \mathrm{X} \mathrm{In}]$	-/ 0,2 $\div 1$ (steps 0,1 1 n)
Earth leakage trip $\Delta t / t_{g}\left(\mathrm{t}=\mathrm{k} \circ \mathrm{l}^{\mathbf{2}} \mathrm{t}=\mathrm{k}\right)$ [s]	$-10,08 \div 1$ (steps 40ms)
Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$) (mm)	$140 \times 260 \times 105$ (3P)
	$183 \times 260 \times 105$ (4P)

6.1 Breaking capacity (kA)

		Breaking capacity (kA) \& $\mathrm{Ics}^{\text {c }}$			
		3P-4P			
IEC 60947-2	$\mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\text {cu }}$ ($\mathrm{lcu}_{\text {cu }}$ letter)	36kA (F)	50kA (N)	70kA (H)	100kA (L)
	220/240 V AC	70	100	105	150
	380/415 V AC	36	50	70	100
	440/460 V AC	30	45	65	80
	480/500 V AC	25	35	45	55
	480/550 V AC	20	24	28	30
	600 V AC	20	24	28	30
	690 V AC	14	20	22	25
	$\mathrm{lcs}_{\text {c }}(\% \mathrm{Icu}$	100	100	100	70
	Rated making capacity under short circuit I_{cm}				
	$1 \mathrm{cma}^{\text {(} \mathrm{kA})}$ at 415V	76.5	105	154	220
NEMA AB-1	220/240 V AC	70	100	105	150
	480/500 V AC	25	35	45	55
	690 V AC	14	20	22	25

6.3 Rated current $\left(\mathrm{In}_{\mathrm{n}}\right)$ at $40^{\circ} \mathrm{C} / 50^{\circ} \mathrm{C}$

	Phases limit trip current			
	thermal ($\left.\mathbf{r}_{\mathbf{r}}\right)$		magnetic ($\left.\mathbf{I}_{\mathbf{i}}\right)$	
$\mathbf{I}_{\mathbf{n}} \mathbf{(A)}$	$\mathbf{0 . 2 \times \mathbf { I } _ { \mathbf { n } }}$	$\mathbf{1} \times \mathbf{I}_{\mathbf{n}}$	$\mathbf{1 . 5 \times \mathbf { I } _ { \mathbf { r } }}$	$\mathbf{1 0} \times \mathbf{I}_{\mathbf{r}}$
500	100	500	750	5000
630	126	630	945	6300
800	160	800	1200	8000
1000	200	1000	1500	10000
1250	250	1250	1875	12500

* For neutral adjustment, as explained in technical sheet, please consider the values ratios 100% on set currents.

6.3 Load operations

Force on handle	In \leq 400A	In $\geq \mathbf{5 0 0 A}$
Opening operation (N)	80	130
Closing operation (N)	180	210
Restore operation (N)	145	200

6.4 Electrodynamic forces

The table below shows an indication of suggested distances to keep between the breaker and the first fixing point of the conductor and bars in order to reduce the effects of the electrodynamic stresses that may be created during a short circuit. In the realization of anchorage system it is recommend the use of isolators suitable for the type of conductor used and the operating voltage.

$\mathbf{I}_{\mathbf{c c}}(\mathbf{k A})$	Maximum Distance $(\mathbf{m m})$
36	350
50	300
70	250
100	200

According to conductor type and bar system (except Legrand bar kits),
the choice of the distance to keep is to be calibrated by the installer.
Also installer must take into account the weight of the conductors so that
this does not affect the electrical junction between the conductor itself and the connection point.

DPX ${ }^{3} 1600$ S10 electronic

(display version) circuit breakers

Reference(s) :
from 422900 to 4229 15;
from 422920 to 4229 53; from 422955 to 4229 58;
from 422960 to 422993 ; from 422995 to 422998

6.6 DERATINGS

6.6.1 Temperature

Rated current and his adjustment has to be considered relating to a rise or fall of ambient temperature and to a different version or installation conditions. The table below indicates the maximum long-time (LT) protection setting depending on the ambient temperature.

	Temperature $\mathbf{~ T a ~}\left({ }^{\circ} \mathrm{C}\right)$		
$\mathbf{I n}_{\mathrm{n}}(\mathrm{A})$	up to 50	$\mathbf{6 0}$	$\mathbf{7 0}$
$\mathbf{5 0 0}$	500	500	500
$\mathbf{6 3 0}$	630	630	630
$\mathbf{8 0 0}$	800	800	720
$\mathbf{1 0 0 0}$	1000	1000	900
$\mathbf{1 2 5 0}$	1250	1250	938

For derating temperature with other configurations, see table A.

6.6.2 Specific condition use

Climatic conditions
according to IEC/EN 60947-1 Annex Q, Cat. F subject to temperature, humidity, vibration, shock and salt mist.

Electromagnetic disturbances (EMC)

for DPX ${ }^{3} 1600$ circuit breakers, according to IEC/EN 60947-2 Annex F

Pollution degree

for DPX³ 1600 circuit breakers, degree 3, according to IEC/EN 60947-2

6.6.3 Altitude

Altitude derating for DPX^{3} and DPX^{3}-।

Altitude (m)	$\mathbf{2 0 0 0}$	$\mathbf{3 0 0 0}$	$\mathbf{4 0 0 0}$	$\mathbf{5 0 0 0}$
$\mathrm{U}_{\mathrm{e}}(\mathrm{V})$	690	590	520	460
$\mathrm{I}_{\mathrm{n}}(\mathrm{A})\left(\mathrm{T}_{\mathrm{a}}=40^{\circ} \mathrm{C} / 50^{\circ} \mathrm{C}\right)$	$1 \times \mathrm{I}_{\mathrm{n}}$	$0.98 \times \mathrm{I}_{\mathrm{n}}$	$0.93 \times \mathrm{I}_{\mathrm{n}}$	$0.9 \times \mathrm{I}_{\mathrm{n}}$

DPX ${ }^{3} 1600$ S10 electronic (display version) circuit breakers

Reference(s) :
from 422900 to 4229 15;
from 422920 to 4229 53; from 422955 to 4229 58;
from 422960 to 422993 ; from 422995 to 422998

7.ELECTRONIC PROTECTION S10

Electronic DPX^{3} circuit breakers equipped with S 10 protection units are fully configurable. They can be used to adapt settings as closely as possible to the requirements of your installation, either by enabling/disabling the different protection devices (tripping time delays and currents), or by altering the different trip thresholds.
The tripping curve is therefore fully customised to suit the real-life conditions of each project.

Thanks to the internal battery, the protection unit can be set even if the circuit breaker is de-energised. Tests and troubleshooting can be done directly via the circuit breaker LCD screens.

A single circuit breaker can operate according to different tripping curves depending on the settings, as explained in the following images:

1

SI

LSIg

- $I_{r} \quad$ Long time protection against overloads
- t_{r} Long time protection delay
- $I_{\text {sd }} \quad$ Short time protection against short circuits
- $\mathrm{t}_{\mathrm{sd}} \quad$ Short time protection delay
- $l_{i} \quad$ Instantaneous protection against high-intensity shortCircuits
- $\mathrm{I}_{\mathrm{g}} \quad$ Earth fault current
- t_{g} Earth fault current protection delay
- IN Neutral protection

See relative instruction sheet for details

Settings on DPX ${ }^{3} 250 \mathrm{HP}, \mathrm{DPX}^{3} 630$ and $\mathrm{DPX}^{3} 1600$ S10 electronic protection

There are 2 options for configuring setting: locally on the circuit breaker or on a PC, smartphone or tablet:

Settings	DPX ${ }^{3} 250 \mathrm{HP}$, DPX $^{3} 630$ and DPX ${ }^{3} 1600$ with S 10 electronic protection	
	Locally on the device	By software or app
I_{r}	0.2 to $1 \mathrm{x} \mathrm{I}_{n}$, in steps of 1 A	0.2 to $1 \times \mathrm{I}_{\mathrm{n}}$ - OFF, in steps of 1 A
$\mathrm{t}_{\text {d }}$	DPX ${ }^{3} 250$ HP: 3-5-10-15 s DPX $^{3} 630$ and $1600: 3$ to 30 s (7 steps)	DPX ${ }^{3} 250 \mathrm{HP}: 3$ to 15 s , in steps of 40 ms DPX ${ }^{3} 630$ and 1600 : 3 to 30 s in steps of 40 ms
l_{sd}	1.5 to $3 \times \mathrm{I}_{\text {r }}$, in steps of $0.5 \times \mathrm{I}_{\mathrm{r}}$ 3 to $10 \mathrm{x} \mathrm{I}_{\text {r }}$, in steps of $\mathrm{I}_{\text {r }}$	$1.5 \times \mathrm{I}_{\mathrm{r}}$ to $10 \mathrm{xI}_{\mathrm{n}}-$ OFF, in steps of 1 A
$\mathrm{t}_{\text {sd }}(\mathrm{t}=\mathrm{k}, 12 \mathrm{t}=\mathrm{k})$	40 to $480 \mathrm{~ms} \mathrm{(7} \mathrm{steps)}$	40 to 480 ms , in steps of 40 ms
$\mathrm{l}_{\mathrm{i}}(\mathrm{t}=\mathrm{k})$	-	2 to $15 \mathrm{x} \mathrm{I}_{\mathrm{n}}$ - OFF, in steps of 1 A
I_{g}	0.2 to $1 \times I_{n}$, in steps of $0.1 \times I_{n}$	0.2 to $1 \mathrm{x} \mathrm{I}_{\mathrm{n}}$ - OFF, in steps of $0.1 \mathrm{x} \mathrm{I}_{n}$
$\mathrm{tg}_{\mathrm{g}}(\mathrm{t}=\mathrm{k}, 12 \mathrm{t}=\mathrm{k})$	80 to 480 ms and 1 s (6 steps)	80 ms to 1 s , in steps of 40 ms

There are several ways to configure the various settings: directly on the protection units (using the $+/-$ and $>/<$ buttons on the front face), on a PC with Power Control Station software installed, or on a tablet or smartphone via the EnerUp+ Project app.

Power Control Station software for PC and the EnerUp+ Project app for smartphone/tablet can be used to exchange data with the DPX ${ }^{3}$ S10 protection unit.
The software and app can be used to:

- monitor the status of the circuit breaker
- display information (firmware and device versions, alarms, measurements, parameters, fault log, settings)
- configure the different protection devices [1]
- update the protection unit firmware [2]
- generate reports based on the data stored and read by the protection unit [1]
- run diagnostic tests
- upload data linked to your profile and installation to the Cloud (with the EnerUp + Project app only)

[1] With the Power Control Station software only

[2] For Legrand technical support via the Power Control Station software only

Together with above protections, activated in case of electric faults, the trip unit also integrates self-protection for:

- Over temperature : in case the internal temperature of protection unit exceed $95^{\circ} \mathrm{C}$;
- Auto diagnostics: in case embedded watchdog circuit detects internal malfunctions, which could compromise the correct working of microcontroller.

DPX ${ }^{3} 1600$ S10 electronic

 (display version) circuit breakersReference(s) :
from 422900 to 4229 15;
from 422920 to 4229 53; from 422955 to 4229 58;
from 422960 to 422993 ; from 422995 to 422998

With electronic DPX ${ }^{3} 250 \mathrm{HP}, 630$ and 1600 S 10 with integrated measurement, it is very easy to monitor the parameters and consumption of the different circuits in the installation.
Electronic DPX ${ }^{3}$ circuit breakers equipped with S 10 protection units with integrated measurement can be used to display the current, voltage, active and reactive power, frequency and power factor values, as well as the energy consumption.
Alarms can be programmed on some parameters, including minimum and maximum voltage, phase unbalance, and minimum and maximum frequency.
The measured values are displayed directly on the LCD screen on the front of the equipment.
The measurement data can also be displayed on a PC equipped with Power Control Station software or remotely on a smartphone or tablet via the EnerUp+ Project app.

In the electronic unit protection, an energy metering central unit is integrated.
The possible parameters that can be measured are listed in the following table:

Measured	UNIT	DESCRIPTION
I_{1}	A	L1 realtime measured value
I_{2}	A	L2 realtime measured value
I_{3}	A	L 3 realtime measured value
$\mathrm{I}_{\mathrm{N}}(4 \mathrm{P})$	A	N realtime measured value
I_{6}	A	G realtime measured value
$\mathrm{U}_{12} \mathrm{U}_{23} \mathrm{U}_{31}(3 \mathrm{P})$	V	Phase to Phase Voltage
$\mathrm{V}_{12} \mathrm{~V}_{23} \mathrm{~V}_{31}(4 \mathrm{P})$	V	Voltage
Freq.	Hz	Frequency
$\mathrm{P}_{\text {Tot }}$	kW	Active Power
$\mathrm{Q}_{\text {Tot }}$	kvar	Reactive Power
PF		Power Factor
$\mathrm{E}_{\mathrm{p}} \downarrow$	kWh	Consumed active energy
$\mathrm{E}_{\mathrm{p}} \uparrow$	kWh	Returned active energy
$\mathrm{E}_{\mathrm{q}} \downarrow$	kvarh	Consumed reactive energy
$\mathrm{E}_{\mathrm{q}} \uparrow$	Kvar h	Returned reactive energy

Function performance class according to IEC 61557-12

Function	Performance	Measurement range					Other complementary characteristics				
		DPX ${ }^{3} 1600 \mathrm{~A}$					$\mathrm{I}_{\text {max }} \mathrm{PMD}$				
I_{n}		630A	800A	1000A	1250A	1600A	630A	800A	1000A	1250A	1600A
P	1	0.5 kW	750A	960A	1200A	1500A	1920A				
		900kW	1.15MW	1.4MW	1.8MW	2.3MW	$\mathrm{I}_{\mathrm{b}}=400 \mathrm{~A}, \mathrm{U}_{n}=400 \mathrm{~V}, \mathrm{f}_{n}=50 \mathrm{~Hz}$				
Q_{v}	2	0.5kvar	0.5kvar	0.5kvar	0.5kvar	0.5kvar	750A	960 A	1200 A	1500A	1920A
		900 kW	1.15MW	1.4MW	1.8MW	2.3MW	$\mathrm{I}_{6}=250 \mathrm{~A}, \mathrm{U}_{n}=400 \mathrm{~V}, \mathrm{f}_{n}=50 \mathrm{~Hz}$				
E_{a}	1	0... $999 \mathrm{GW} / \mathrm{h}$					750A	960 A	1200 A	1500A	1920A
							$\mathrm{I}_{6}=400 \mathrm{~A}, \mathrm{U}_{n}=400 \mathrm{~V}, \mathrm{f}_{\mathrm{n}}=50 \mathrm{~Hz}$				
E_{rV}	2	0... $999 \mathrm{GW} / \mathrm{h}$					750A	960 A	1200 A	1500A	1920A
							$\mathrm{I}_{\mathrm{b}}=400 \mathrm{~A}, \mathrm{U}_{n}=400 \mathrm{~V}, \mathrm{f}_{\mathrm{n}}=50 \mathrm{~Hz}$				
f	0.02	$50 . .60 \mathrm{~Hz}$					-				
1	1	20A	20A	20A	20A	20A	750A	960A	1200 A	1500A	1920A
		750A	950A	1200A	1500A	1950A	$\mathrm{I}_{\mathrm{b}}=400 \mathrm{~A}, \mathrm{U}_{n}=400 \mathrm{~V}, \mathrm{f}_{\mathrm{n}}=50 \mathrm{~Hz}$				
I_{N}	1	20A	20A	20A	20A	20A	750 A	960 A	1200 A	1500A	1920A
		750A	950A	1200A	1500A	1950A	$\mathrm{I}_{\mathrm{b}}=400 \mathrm{~A}, \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V}, \mathrm{f}_{\mathrm{n}}=50 \mathrm{~Hz}$				
$\begin{aligned} & \mathrm{U}(3 \mathrm{P}), \\ & \mathrm{V}(4 \mathrm{P}) \end{aligned}$	0.5	88...690V					-				
$\mathrm{P}_{\text {FA }}$	0.5	-					750A	960A	1200A	1500A	1920A
							$\mathrm{I}_{6}=400 \mathrm{~A}, \mathrm{U}_{n}=400 \mathrm{~V}, \mathrm{f}_{\mathrm{n}}=50 \mathrm{~Hz}$				
$\begin{aligned} & \text { THDu (3P), } \\ & \text { THDv (4P) } \end{aligned}$	5	110...690V					-				
THD ${ }_{\text {i }}$	5	400A	400A	400A	400A	400A	-				
		630A	800A	1000A	1250 A	1600A					

General remarks on protection unit

The protection units S10 are normally supplied by the internal current transformers (CTs).
When the current flowing through the circuit breaker is greater than 12% of the maximum power (20% of In for single phase load), the internal current supply ensures all operation of the protection unit, included LED status, display indications and diagnostic functions (e.g. trip test).
Display backlight and integrated measure (if available) are instead guaranteed starting from 20% of the maximum power (35% of I_{n} for single phase load), in absence of any other supply. In any case the external power supply is strongly recommended for the correct working of measurement, as well as RS485 communication.
To ensure the same performance when the load is less than 12% of the maximum power (20% of I_{n} for single phase load) to grant complete functions, one of the following optional power supplies can be used:

- external Auxiliary power supplier or, alternatively, Modbus/EMS communication interface.
- power supply temporarily connected to frontal USB socket, connected to a 5V DC power bank, Dongle BLE or PC.

DPX ${ }^{3} 1600$ S10 electronic （display version）circuit breakers

8．CONFORMITY

DPX ${ }^{3}$ range of product concerning circuit－breakers exceed compliance with the IEC／EN standard 60947－2．

Certification available by IECEE CB－scheme or LOVAG Compliance scheme．
Marks as CCC（China），EAC（Eurasian Federation）or different local certification are available．
DMX ${ }^{3}$ are in conformity with the Lloyds Shipping Register，RINA and Bureau Veritas Marine．

DMX ${ }^{3}$ respect the European Directives REACh，RoHS，RAEE and Product Environment Product（PEP Ecopassport）are available．

For specific information，please contact Legrand support．

8．1 Marking

Product（borh circuit breakers anc switch disconnectors）are provided with labelling in full conformity to the referred standard and directives requirements by laser or sticker labels as：

Product laser label on front

－Manufacturer responsible
－Denomination，type product，code
－Standard conformity
－Standard characteristics declared
－coloured identification of I_{cu} at 415 V

Product sticker label on side

－Manufacturer responsible
－Denomination and type product
－Standard conformity
－Mark／Licence（if any）
－Directive requirements
－bar code identification product
－Manufacturing Country

Mark sticker label on side
－Product code
－Mark／Licence（if any）
－Country deviation，if any

Packaging sticker label

－Manufacturer responsible

－Denomination and type product
－Standard conformity
－Mark／Licence（if any）
－Directive requirements
－bar code identification product

DPX³ 1600 S10 electronic (display version) circuit breakers

9. EQUIPMENTS AND ACCESSORIES

9.1 Releases (for DPX ${ }^{3} 630 /$ DPX 3 1600)

- shunt releases with voltage:

24 Vac and dc
48 Vac and dc
$110 \div 130 \mathrm{Vac}$ and dc
$220 \div 250 \mathrm{Vac}$ and dc
$380 \div 440 \mathrm{Vac}$ and dc
ref. 422239
ref. 422240
ref. 422241
ref. 422242
ref. 422243

Shunt releases electrical characteristics	
Rated voltage (U_{c})	Both ac and dc: $24 \mathrm{~V} / 48 \mathrm{~V} / \mathbf{1 1 0} \div \mathbf{1 3 0 \mathrm { V } / 2 2 0 \div 2 5 0 \mathrm { V } / 3 8 0 \div 4 4 0 \mathrm { V }}$
Voltage range $\left(\% \mathrm{U}_{\mathrm{c}}\right)$	$\mathbf{7 0} \div 110$
Intervention time (ms)	≤ 50
Power consumption $(\mathrm{W} / \mathrm{VA})$	$\mathbf{3 0 0}$
Minimum opening time (ms)	50 ms
Insulation voltage (kV)	$\mathbf{2 , 5}$

- undervoltage releases with voltage:

24 V dc
ref. 422244
24 V ac ref. 422245
48 V dc
110-125 V ac
220-240 V ac
380-415 V ac
ref. 422246
ref. 422247
ref. 422248
ref. 422249

Undervoltage relases electrical characteristics	
Rated voltage (U_{c})	ac: $24 \mathrm{~V} / 110 \div 125 \mathrm{~V} / 220 \div 240 \mathrm{~V} / 380 \div 415 \mathrm{~V}$ dc: $24 \mathrm{~V} / 48 \mathrm{~V}$
Voltage range $\left(\% \mathrm{U}_{\mathrm{c}}\right.$)	$85 \div 110$
Minimum opening time (ms)	50
Power consumption (W/VA)	$1.6 / 5$

- time-lag undervoltage releases (800 ms)

Time-lag modules with voltage:
230 V ac
ref. 026190
400 V ac
ref. 026191

Universal Release
ref. 422623
(to be equipped with a time-lag module 0261 90/91)

9.2 Auxiliary contacts (for DPX ${ }^{3} 630$ / DPX ${ }^{3}$ 1600)

Changeover switch 3A - 250 VAC
ref. 421011
To show the state of the contacts or opening of the $\mathrm{DPX}^{3} / \mathrm{DPX}^{3}-\mathrm{I}$ on a fault:

- Auxiliary contact (standard) OC
- Fault signal CTR

Auxiliary contact electrica characteristics		
Rated voltage ($\mathbf{V}_{\mathbf{n}}$)	\mathbf{V} (ac or dc)	$\mathbf{2 4}$ to $\mathbf{2 5 0}$
Intensity (A)	$\mathbf{2 4 ~ V ~ d c}$	5
	$\mathbf{4 8} \mathbf{~ V ~ d c}$	1.7
	$\mathbf{1 1 0 ~ \mathbf { ~ V ~ d c }}$	0.5
	$\mathbf{2 3 0} \mathbf{~ V ~ d c}$	0.25
	$\mathbf{1 1 0 ~ V ~ a c}$	4
	$\mathbf{2 3 0 / 2 5 0 ~ V}$ ac	3

Configurations:
DPX $^{3} 1600 \rightarrow 3$ auxiliary contacts +1 fault signal +1 release

To get more information on auxiliary mounting procedures, please refer to product instruction sheet.

9.3 Universal keylocks

These keylocks must be used for all the accessories that can be locked:

- rotary handle
- motor operator
- plug-in mechanism
- draw-out mechanism

For each of these, a specific accessory (indicated in the specific section of this datasheet) must be added in order to get the complete locking kits for the specific application.

- 1 lock +1 flat key with random mapping
- 1 lock +1 flat key with fixed mapping (EL43525)
- 1 lock +1 flat key with fixed mapping (EL43363)
- 1 lock +1 star key with random mapping
ref. 423880
ref. 423881
ref. 423882 ref. 423883

DPX 31600 S10 electronic (display version) circuit breakers

from 422900 to 4229 15
from 422920 to 4229 53; from 422955 to 4229 58;
from 422960 to 4229 93; from 422995 to 422998

9.4 Rotary handles

Direct on DPX3 (with auxiliary option)

- Standard (black)
ref. 026261

Vari-depth handle IP55 (with auxiliary option)

- Standard (black)
ref. 026283
- For emergency use (red / yellow) adapting on standard handle
ref. 026284

Locking accessories (for vary-depth handle with auxiliary option)

- Key lock accessory for vari-depth rotary handle ref. 422807

Ref. 423807 must be used with universal keylocks to get the complete locking kit for rotary handle

9.5 Motor-driven handles

Factory assembled

Front operated

- Voltage 230 V AC
ref. 026154

Customer assembled

Front operated

- Voltage

24 V AC and $\mathrm{DC}\left(\mathrm{I}_{\mathrm{n}} \leq 1250 \mathrm{~A}\right)$
ref. 026124

- Voltage 48 V AC and DC $\left(\mathrm{I}_{n} \leq 1250 \mathrm{~A}\right)$
- Voltage
- Voltage

110 V AC and DC $\left(\mathrm{I}_{\mathrm{n}} \leq 1250 \mathrm{~A}\right)$
220 V AC and $\mathrm{DC}\left(\mathrm{I}_{\mathrm{n}} \leq 1250 \mathrm{~A}\right)$

- Voltage

24 V AC and $D C\left(I_{n}=1600 \mathrm{~A}\right)$
ref. 026125
ref. 026126
ref. 026123
ref. 026119

- Voltage

48 V AC and DC $\left(I_{n}=1600 \mathrm{~A}\right)$
ref. 026128

- Voltage 110 V AC and $\left.D C\left(I_{n}=1600 \mathrm{~A}\right)\right)$ ref. 026129
ref. 026127
Locking accessories
- Key lock accessory for motor operator
ref. 422806

Ref. 422806 must be used with universal keylocks to get the complete locking kit for motor operator

9.6 Mechanical accessories

Phase insulators

- \quad Set of 3
ref. 026266
Sealable terminal shields
- Set of 23 P
ref. 026264
- Set of 24 P ref. 026265

Padlock

- Accessories to lock in open position
ref. 026260
Terminal covers to guarantee IP20
- Set of 23 P
ref. 422590
- Set of 24 P
ref. 422591
- External neutral

9.7 Connection accessories

Cage terminals

- Set of 4 terminals for cables $2 \times 240 \mathrm{~mm}^{2}$ max (rigid) or $2 \times 185 \mathrm{~mm}^{2}$ max (flexible) (Cu/AI)
ref. 026269
- Set of 4 terminals for cables $4 \times 240 \mathrm{~mm}^{2}$ max (rigid) or $4 \times 185 \mathrm{~mm}^{2}$ max (flexible) (Cu/AI) ref. 026270

Extended front terminals

- Short terminals for 500-1250A (2 bars max. per pole)
- Long terminals for 1600A (3 bars max. per pole) ref. 026268

Spreaders

- Set of 3 (incoming or outgoing 3P)
ref. 026273
- Set of 4 (incoming or outgoing 4P) ref. 026274

Rear terminals
(use to connect fixed version with front terminals into fixed version with rear terminal)

- Set of swivel terminals, incoming or outgoing

4P ref. 026382

- Set of flat rear terminals, incoming or outgoing 3P
ref. 026381
4P ref. 026383

9.8 Draw-out version

(A DPX ${ }^{3}$ draw-out version is a plug-in DPX ${ }^{3}$ fitted with a "Débro-lift" mechanism which can be used to withdraw the DPX ${ }^{3}$ while keeping it on its base)

Draw-out base
Base for DPX 1600 equipped with "Débro-lift" mechanism

- Front terminals

$3 P$	ref. 422586
$4 P$	ref. 422587
nals	ref. 422588
4P	ref. 422589

"Débro-lift" mechanism
To be fitted on a DPX ${ }^{3} 1600$ fixed version in order to obtain the movable part of a drawout circuit breaker

- Mobile part for draw-out version

$3 P$	ref. 422593
$4 P$	ref. 422594

Key lock for "Débro-lift" mechanism

- One key for DPX³ only
(enable locking in draw - out position)
- Key lock accessory for draw-out
(frontal masks for motor operator or rotary handle) ref. 422809
- Key lock accessory for draw-out
ref. 422810
Ref. 422809 and 422810 must be used with universal keylocks to get the complete locking kit for draw-out version

Accessories for "Débro-lift" mechanism

- Isolated handle for drawing-out ref 026575
- Signal contact (plugged-in / drawn-out) ref 026574
- Set of connectors (8 contacts) ref 026399
- Set of connectors (6 contacts) ref 026319
- Support plate for draw-out version ref 422595
- Automatic auxiliary contacts (12 pin) D/O version ref. 422230

DPX 31600 S10 electronic (display version) circuit breakers

Plate for transfer switches (factory assembled)

(A transfer switch plate is composed of one plate with interlock for 2 devices)

- Plate for breaker or trip-free switch fixed version
ref. 026410
- Plate for breaker or trip-free switch plug-in and draw-out version

9.9 Specific accessories for electronic version

Auxiliary power supply

- For supplying electronic units
ref. 421083
Is used to supply DPX ${ }^{3}$ electronic circuit breakers $\mathrm{S} 2 / \mathrm{Sg}$ with / without earth leakage module and with / without energy metering central unit. It is mandatory in case of electronic breakers with integrated measure and not interconnected in a supervision system (MODBUS network not requested) to correctly manage the measure functions

Technical characteristics:

- Input voltage: 24 V ad/dc (+/- 10\%)
- Enclosure: 2 DIN modules
- Output: up to 250 mA (to supply many circuit breakers according to the following table):

421083	DPX ${ }^{3} 250 / 630 / 1600$	[mA]
$\mathrm{b}_{\text {out }} \mathrm{MAX}=250 \mathrm{~mA}$	Electronic (S2/Sg)	50
	Electronic with power metering (S2/Sg)	62.5
	Electronic with residual current protection (S2)	50
	Electronic with residual current protection and power metering (S2)	62.5

According to single absorptions, it can be possible to connect more than one breaker

Reference(s) :
from 422900 to 4229 15;
from 422920 to 4229 53; from 422955 to 4229 58;
from 422960 to 4229 93; from 422995 to 422998

MODBUS communication

- RS485 MODBUS communication interface
ref. 421075
Is used for sharing on MODBUS network all information managed by DPX 3 electronic circuit breakers $\mathrm{S} 2 / \mathrm{Sg}$ with / without earth leakage module and with / without energy metering central unit.

Technical characteristics:

- USB local PC connection
- Input voltage: 24 V ad/dc (+/- 10\%)
- Enclosure: 1 DIN modules
- MODBUS address configuration / transmission mode / transmission speed by physic configurators
- Output relay ($220 \mathrm{~V}-0,2 \mathrm{~A}$): to signal tripped position

Consumption: 90 mA
It is possible to connect only one breaker to the interface.

In case of use of MODBUS interface 4210 75, the external power supply module 421083 is not necessary because the external power is already provided by the MODBUS module

DPX ${ }^{3}$ electronic interface - EMS CX ${ }^{3}$

- For connecting electronic DPX ${ }^{3}$ S10 $(250 \mathrm{HP}, 630,1600)$ to an EMS communication network. All the informations managed by circuit breaker's electronic card will be shared on the EMS network Dimension: 1 module
Power supply: with EMS CX³ power supply module 414945 Address can be modified and set locally by DIP switches or remotely with the help of the EMS configurator software

$$
\text { ref. } 423890
$$

Bluetooth communication key

USB key for BLE communication with electronic DPX ${ }^{3}$ S10 (250 HP, 630,1600) to confi gure, monitor and manage it remotely through App Connection port USB on front of the circuit breaker
ref. 028310

EnerUp + Project App for smartphone and tablet available on Apple Store and Google Play Configuration, monitoring and management software (PCS) available for download via e-catalogue (does not require the use of Bluetooth communication key Ref. 0283 10)

Modular power supply

- $230 \mathrm{~V} \pm-27 \mathrm{~V}=-0.6 \mathrm{~A}(2$ modules $) \quad$ ref. BT-E49

Touch screen

- To show data collected by $\mathrm{DX}^{3}, \mathrm{DPX}^{3}, \mathrm{DMX}^{3}, \mathrm{EMDX}^{3}$. It can manage up to 8 devices ref. 026156

DPX ${ }^{3} 1600$ S10 electronic
(display version) circuit breakers

Reference(s)

10. CURVES

10.1.1 Tripping curve [$1 / 3$]

Value	Description
t	time
I	current
I_{r}	long time setting current
t_{r}	long time delay
Isd	short time setting current
tsd	short time delay
Ii	instantaneous release
Icu	rated ultimate short-circuit breaking capacity
$\mathrm{I}^{2} \mathrm{t}=\mathrm{K}$	constant pass-through energy setting
$\mathrm{t}=\mathrm{K}$	constant tripping time setting
-----------	long time trip curve
short time trip curve	
Current tolerance	10% up to $\mathrm{I}_{\text {sd }} ; 20 \%$ up to I_{i}

DPX ${ }^{3} 1600$ S10 electronic
(display version) circuit breakers

Reference(s) :
from 422900 to 4229 15;
from 422920 to 4229 53; from 422955 to 4229 58;
from 422960 to 422993 ; from 422995 to 422998
10.1.2 Tripping curve [$2 / 3$]

Update: 17/11/2022

$I_{\mathrm{cu}}=36-50-70-100 \mathrm{kA} \quad I_{\max }=1600 \mathrm{~A} \quad 3-4 \mathrm{P} \quad \mathrm{U}_{\mathrm{e}}=415 \mathrm{Vac} \quad$ (IEC/EN 60947-2)

Value	Description
t	time
I	current
I_{r}	long time setting current
t_{r}	long time delay
Isd	short time setting current
tsd	short time delay
Ii	instantaneous release
Icu	rated ultimate short-circuit breaking capacity
$\mathrm{I}^{2} \mathrm{t}=\mathrm{K}$	constant pass-through energy setting
$\mathrm{t}=\mathrm{K}$	constant tripping time setting
-----------	long time trip curve
surrent tolerance	10% up to $\mathrm{I}_{\text {sd }} ; 20 \%$ up to I_{i}
Curripe	

DPX ${ }^{3} 1600$ S10 electronic (display version) circuit breakers

Reference(s)
from 422900 to 4229 15;
from 422920 to 4229 53; from 422955 to 4229 58;
from 422960 to 422993 ; from 422995 to 422998
10.1.3 Tripping curve [$3 / 3$]

Update: 17/11/2022

$\mathrm{I}_{\mathrm{cu}}=36-50-70-100 \mathrm{kA} \quad \mathrm{I}_{\max }=1600 \mathrm{~A} \quad 3-4 \mathrm{P} \quad \mathrm{U}_{\mathrm{e}}=415 \mathrm{Vac} \quad$ (IEC/EN 60947-2)

Value	
t	time
I	lurrent
I_{r}	long time setting current
t_{r}	long time delay
Isd	short time setting current
tsd	short time delay
Ii	instantaneous release
Icu	rated ultimate short-circuit breaking capacity
$\mathrm{I}^{2} \mathrm{t}=\mathrm{K}$	constant pass-through energy setting
$\mathrm{t}=\mathrm{K}$	constant tripping time setting
-----------	long time trip curve
$--\quad$ short time trip curve	
Current tolerance	10\% up to $\mathrm{I}_{\text {sd }} ; 20 \%$ up to I_{i}

DPX ${ }^{3} 1600$ S10 electronic (display version) circuit breakers

DPX ${ }^{3} 1600$ S10 electronic (display version) circuit breakers
10.3 Pass-through specific energy characteristic curve

Update: 03/07/2018

Value	Description
I_{cc}	short circuit current
$\mathrm{I}^{2} \mathrm{t}\left(\mathrm{A}^{2} \mathrm{~s}\right)$	pass-through specific energy

$\mathrm{I}_{\mathrm{cu}}=36-50-70-100 \mathrm{kA} \quad \mathrm{I}_{\max }=1600 \mathrm{~A} \quad 3-4 \mathrm{P} \quad \mathrm{U}_{\mathrm{e}}=415 \mathrm{Vac}$ (IEC/EN 60947-2)

Value	Description
I_{cc}	estimated short circuit symmetrical current (RMS value)
I_{p}	maximum short circuit peak current
	maximum prospective short circuit peak current corresponding at the power factor
	maximum real peak short circuit current

DPX	Reference(s) : from 422900 to 4229 15;
(display version) circuit breakers	29920 0422953 ;

A) Derating Temperature and configurations

	Ambient temperature									
	$30^{\circ} \mathrm{C}$		$40^{\circ} \mathrm{C}$		$50^{\circ} \mathrm{C}$		$60^{\circ} \mathrm{C}$		$70^{\circ} \mathrm{C}$	
Fixed version	$\mathrm{I}_{\text {max }}(\mathrm{A})$	$\mathrm{I}_{\mathrm{r}} / \mathrm{I}_{\mathrm{n}}$								
Spreaders, flexible cable	1600	1	1600	1	1600	1	1360	0.85	1200	0.75
Spreaders, rigid cable	1600	1	1600	1	1600	1	1360	0.85	1200	0.75
Spreaders, bars $2 \times 50 \times 10 \mathrm{Cu}$	1600	1	1600	1	1600	1	1520	0.95	1360	0.85
Rear flat terminals, bars $4 \times 50 \times 5 \mathrm{Cu}$, horizontal	1600	1	1600	1	1600	1	1600	1	1440	0.9
Rear flat staggered terminals, bars $4 \times 50 \times 5 \mathrm{Cu}$, horizontal	1600	1	1600	1	1600	1	1600	1	1440	0.9
Draw-out version	$\mathrm{I}_{\text {max }}(\mathrm{A})$	$\mathrm{I}_{\mathrm{r}} / \mathrm{I}_{\mathrm{n}}$								
Spreaders, flexible cable	1600	1	1600	1	1600	1	1280	0.8	1120	0.7
Spreaders, rigid cable	1600	1	1600	1	1600	1	1280	0.8	1120	0.7
Spreaders, bars $2 \times 50 \times 10 \mathrm{Cu}$	1440	0.9	1440	0.9	1440	0.9	1120	0.7	960	0.6
Rear flat terminals, bars $2 \times 100 \times 5 \mathrm{Cu}$, vertical	1440	0.9	1440	0.9	1440	0.9	1120	0.7	960	0.6
Rear flat staggered terminals, bars $2 \times 100 \times 5 \mathrm{Cu}$, vertical	1440	0.9	1440	0.9	1440	0.9	1120	0.7	960	0.6
Rear flat terminals, bars $4 \times 50 \times 5 \mathrm{Cu}$, horizontal	1600	1	1600	1	1600	1	1440	0.9	1120	0.7
Rear flat staggered terminals, bars $4 \times 50 \times 5 \mathrm{Cu}$, horizontal	1600	1	1600	1	1600	1	1440	0.9	1120	0.7

For further technical information, please contact Legrand technical support.

Data indicated in this document refers exclusively to test conditions according to product standards, unless otherwise indicated in the documentation.
For the different conditions of use of the product, inside electrical equipment or in any case inserted in the installation context, refer to the regulatory requirements of the equipment, local regulations and design specifications of the system.

