## 87045 LIMOGES Cedex

Phone :+33 0555068787 - Fax :+33 0555068888

## DPX ${ }^{3} 125$ HP thermal magnetic circuit breakers <br> DPX³-I 125 HP switch disconnectors

## Reference(s)

from 423600 to 4236 19; from 423640 to 4236 59;
from 423680 to 423699 ; from 423700 to 4237 19;
4231 84; 4231 85;

|  |  | CONTENTS | PAGES |
| :---: | :---: | :---: | :---: |
|  | a | 1. USE | 1 |
|  | - | 2. RANGE | 1 |
|  | - 0 | 3. DIMENSIONS AND WEIGHTS | 1 |
|  | $=$ | 4. OVERVIEW | 4 |
|  | logend | 5. ELECTRICAL CONNECTIONS | 4 |
|  |  | 6. ELECTRICAL AND MECHANICAL |  |
|  | 1-0 | CHARACTERISTICS | 6 |
|  |  | 7. CONFORMITY | 8 |
|  |  | 8. EQUIPMENTS AND ACCESSORIES | 9 |
|  |  | 9. CURVES | 11 |

## 1. USE

$\mathrm{DPX}^{3} \mathrm{HP}$ platform has been developed to give a new solution of protection devices for a more precise approach in power installations in order to offer the correct answer for different project needs. DPX ${ }^{3}$ HP platform provide a complete project approach in premium market segment, offering a range completely suitable for high power application with high performance breakers in compact dimensions and at a competitive costs.

## 2. RANGE

Circuit breakers

|  | DPX $^{\mathbf{3}} \mathbf{1 2 5 ~ H P ~}$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{3 6} \mathbf{~ k A}$ |  | 50 kA |  | 70 kA |  | $\mathbf{1 0 0}$ kA |  |
| $\mathbf{I}_{\mathbf{n}}(\mathbf{A})$ | $3 P$ | $4 P$ |
| 16 | 423600 | 423610 | 423640 | 423650 | 423680 | 423690 | 423700 | 423710 |
| 20 | 423601 | 423611 | 423641 | 423651 | 423681 | 423691 | 423701 | 423711 |
| 25 | 423602 | 423612 | 423642 | 423652 | 423682 | 423692 | 423702 | 423712 |
| 32 | 423603 | 423613 | 423643 | 423653 | 423683 | 423693 | 423703 | 423713 |
| 40 | 423604 | 423614 | 423644 | 423654 | 423684 | 423694 | 423704 | 423714 |
| 50 | 423605 | 423615 | 423645 | 423655 | 423685 | 423695 | 423705 | 423715 |
| 63 | 423606 | 423616 | 423646 | 423656 | 423686 | 423696 | 423706 | 423716 |
| 80 | 423607 | 423617 | 423647 | 423657 | 423687 | 423697 | 423707 | 423717 |
| 100 | 423608 | 423618 | 423648 | 423658 | 423688 | 423698 | 423708 | 423718 |
| 125 | 423609 | 423619 | 423649 | 423659 | 423689 | 423699 | 423709 | 423719 |

## Switch disconnectors

| DPX $^{3}-1125 \mathrm{HP}$ |  |  |
| :---: | :---: | :---: |
| $\mathrm{I}_{\mathrm{n}}(\mathrm{A})$ | 3 P | 4 P |
| 125 | 423184 | 423185 |

## 3. DIMENSIONS AND WEIGHTS

### 3.1 Dimensions

Lateral view


Frontal view (3 and 4 poles)


DPX ${ }^{3} 125$ HP thermal magnetic circuit breakers
DPX³-I 125 HP switch disconnectors

Reference(s) :
from 423600 to 4236 19; from 423640 to 4236 59;
from 423680 to 423699 ; from 423700 to 4237 19;
4231 84; 4231 85;

Interlock
(for rear plate interlock dimension, see relative instruction sheet)


Direct rotary handle


DPX ${ }^{3} 125$ HP thermal magnetic circuit breakers
DPX³-I 125 HP switch disconnectors
from 423600 to 4236 19; from 423640 to 4236 59;
from 423680 to 423699 ; from 423700 to 4237 19;
4231 84; 4231 85;


Sealable terminal shields


Spreaders


## Rear terminals



DPX ${ }^{3} 125$ HP thermal magnetic circuit breakers
DPX³-I 125 HP switch disconnectors

Reference(s) :
from 423600 to 4236 19; from 423640 to 4236 59;
from 423680 to 4236 99; from 423700 to 4237 19;
4231 84; 4231 85;

### 3.2 Weights

|  | Weights (Kg) |  |
| :--- | :---: | :---: |
| Configuration | $\mathbf{3 P}$ | $\mathbf{4 P}$ |
| Circuit breaker/switch disconnector | 0.95 | 1.2 |
| Direct rotary handle* | 0.18 |  |
| Vari depth rotary handle* | 0.55 |  |
| Interlock* | 0.35 |  |
| Spreader* | 0.135 | 0.175 |
| * to add to device weight |  |  |

## 4. OVERVIEW

4.1 Supplied with:

- fixing screws (2 for 3P and 4 for 4P)
- $\quad$ screws for connections ( 6 for $3 P$ and 8 for $4 P$ )
- phase insulators (2 for 3P and 3 for 4P)


## 5. ELECTRICAL CONNECTIONS

5.1 Mounting possibilities

On plate:

- Vertical
- Horizontal
- Supply invertor type


### 5.2 Mounting

(see instruction sheet for detailed mounting procedures)


## Busbars/cable lugs:



DPX ${ }^{3} 125$ HP thermal magnetic circuit breakers
DPX³-I 125 HP switch disconnectors


## Cables:



## DPX ${ }^{3} 125$ HP thermal magnetic circuit breakers

DPX³-I 125 HP switch disconnectors

Reference(s) :
from 423600 to 4236 19; from 423640 to 4236 59; from 423680 to 423699 ; from 423700 to 4237 19; 4231 84; 4231 85;
6. ELECTRICAL AND MECHANICAL CHARACTERISTICS

Circuit breaker

| Circuit Breaker | DPX ${ }^{3} 125 \mathrm{HP}$ F/N/H/L (36kA, $50 \mathrm{kA}, 70 \mathrm{kA}, 100 \mathrm{kA})$ |
| :---: | :---: |
| Rated current (A) | 16-20-25-32-40-50-63-80-100-125 |
| Poles | 3-4 |
| Pole pitch (mm) | 25 |
| Rated insulation voltage ( $50 / 60 \mathrm{~Hz}$ ) $\mathrm{U}_{1}(\mathrm{~V})$ | 800 |
| Rated operating voltage ( $50 / 60 \mathrm{~Hz}$ ) $\mathrm{U}_{\mathrm{e}}(\mathrm{V})$ | 690 |
| Rated impulse withstand current $\mathrm{U}_{\mathrm{imp}}(\mathrm{kV})$ | 8 |
| Rated frequency (Hz) | 50-60 |
| Reference ambient temperature( ${ }^{\circ} \mathrm{C}$ ) | 40-50 |
| Operating temperature ( ${ }^{\circ} \mathrm{C}$ ) | -25 $\div 70$ |
| Mechanical endurance (cycles) | 20000 |
| Electrical endurance at $\mathrm{I}_{\mathrm{n}}$ (cycles) | 8000 |
| Utilization category | A |
| Suitable for isolation | Yes |
| Type of protection | Thermal-magnetic |
| Thermal adjustment $\mathrm{I}_{\mathrm{r}}$ | 0,8-0,9-1 $\times \mathrm{I}_{n}$ |
| Magnetic adjustment $\mathrm{I}_{1}(\mathrm{~A})$ | 400 A up to $\mathrm{In}=40 \mathrm{~A}$ (not adjustable) <br> 10 x In up to $\mathrm{In}=125 \mathrm{~A}$ (not adjustable) |
| Neutral protection for 4P (\% $\mathrm{t}_{\text {th }}$ of phase pole) | 100 |
| Dimensions ( $\mathrm{W} \times \mathrm{H} \times \mathrm{D}$ ) (mm) | $75 \times 135 \times 86$ (3P) |
|  | $100 \times 135 \times 86$ (4P) |

## Switch disconnectors

| Switch | $\mathrm{DPX}^{3} \mathrm{-l} 125 \mathrm{HP}$ |
| :--- | :--- |
| Uninterrupted nominal current $\mathrm{I}_{\mathrm{e}}(\mathrm{A})$ | 125 |
| Short-time resistive current $\mathrm{I}_{\mathrm{cw}}(\mathrm{kA})$ for 1 s | 1.5 |
| Rated short-circuit making capacity $\mathrm{I}_{\mathrm{em}}(\mathrm{kA})$ | 2.5 |
| Rated insulation voltage $\mathrm{U}_{\mathrm{I}}(\mathrm{V} \mathrm{AC})$ | 800 |
| Maximum rated operating voltage $\mathrm{U}_{0}(\mathrm{~V} \mathrm{AC})$ | 690 |
| Rated impulse withstand voltage $\mathrm{U}_{\mathrm{imp}}(\mathrm{kV})$ | 8 |
| Utilisation category | AC23A |
| Suitable for isolation | Yes |
| Nominal frequency $(\mathrm{Hz})$ | $50-60$ |
| Operating temperature $\left({ }^{\circ} \mathrm{C}\right)$ | $-25 \div 70$ |
| Mechanical endurance $($ cycles $)$ | 20000 |
| Electrical endurance at $\mathrm{I}_{\mathrm{n}}(\mathrm{cycles})$ | 8000 |
| Dimensions $(\mathrm{W} \times \mathrm{H} \times \mathrm{D})(\mathrm{mm})$ | $75 \times 135 \times 86(3 \mathrm{P})$ |

### 6.1 Main parts constituting the circuit breaker


6.2 Breaking capacity (kA)

|  |  | Breaking capacity (kA) \& $\mathrm{I}_{\mathrm{cs}}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 3P-4P |  |  |  |
| IEC 60947-2 | $\mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{cu}}$ ( $\mathrm{I}_{\mathrm{cu}}$ letter) | 36kA (F) | 50kA (N) | 70kA (H) | 100kA (L) |
|  | 240 V AC | 70 | 90 | 100 | 150 |
|  | 415 V AC | 36 | 50 | 70 | 100 |
|  | 500 V AC | 12 | 16 | 20 | 25 |
|  | 690 V AC | 5 | 6 | 10 | 12 |
|  | 250 V DC | 10 | 10 | 10 | 10 |
|  | $\mathrm{Ics}^{\left(\% / \mathrm{I}_{\text {cu }}\right)}$ | 100 | 100 | 100 | 100 |
|  | Rated making capacity under short circuit $\mathrm{I}_{\mathrm{cm}}$ |  |  |  |  |
|  | $\mathrm{I}_{\mathrm{cm}}(\mathrm{kA})$ at 415V | 76.5 | 105 | 154 | 220 |
| NEMA AB-1 | 240 V AC | 70 | 90 | 100 | 150 |
|  | 500 V AC | 12 | 16 | 20 | 25 |
|  | 690 V AC | 5 | 6 | 10 | 12 |

6.3 Rated current $\left(\mathrm{I}_{\mathrm{n}}\right)$ at $40^{\circ} \mathrm{C} / 50^{\circ} \mathrm{C}$

|  | Phases Iimit trip current |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | thermal (Ir) |  | magnetic ( $I_{i}$ ) |  |
| $I_{n}(A)$ | $0.8 \times I_{n}$ | $1 \times I_{n}$ | min | max |
| 16 | 13 | 16 | 400 | 400 |
| 20 | 16 | 20 | 400 | 400 |
| 25 | 20 | 25 | 400 | 400 |
| 32 | 26 | 32 | 400 | 400 |
| 40 | 32 | 40 | 400 | 400 |
| 50 | 40 | 50 | 500 | 500 |
| 63 | 51 | 63 | 630 | 630 |
| 80 | 64 | 80 | 800 | 800 |
| 100 | 80 | 100 | 1000 | 1000 |
| 125 | 100 | 125 | 1250 | 1250 |

### 6.3 Load operations

| Force on handle | N |
| :--- | :---: |
| Opening operation | 40 |
| Closing operation | 40 |
| Restore operation | 53 |

### 6.4 Electrodynamic forces

The table below shows an indication of suggested distances to keep between the breaker and the first fixing point of the conductor and bars

## DPX ${ }^{3} 125$ HP thermal magnetic circuit breakers <br> DPX³-I 125 HP switch disconnectors

Reference(s):
from 423600 to 4236 19; from 423640 to 4236 59; from 423680 to 423699 ; from 423700 to 4237 19; 4231 84; 4231 85;
in order to reduce the effects of the electrodynamic stresses that may be created during a short circuit. In the realization of anchorage system it is recommend the use of isolators suitable for the type of conductor used and the operating voltage.

| $\mathbf{I}_{\text {cc }}($ kA $)$ | Maximum Distance (mm) |
| :---: | :---: |
| 36 | 350 |
| 50 | 300 |
| 70 | 250 |
| 100 | 200 |

According to conductor type and bar system (except Legrand bar kits), the choice of the distance to keep is to be calibrated by the installer.
Also installer must take into account the weight of the conductors so that this does not affect the electrical junction between the conductor itself and the connection point.

### 6.5 Power losses per pole under $\mathrm{In}_{n}$

Circuit breaker ( $\mathrm{I}_{\mathrm{cu}}<=50 \mathrm{kA}$ )

|  | Power losses per pole (W) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| In (A) | 16 | 20 | 25 | 32 | 40 | 50 | 63 | 80 | 100 | 125 |
| Lugs | 3.46 | 4.80 | 7.50 | 2.92 | 4.32 | 6.75 | 6.37 | 6.02 | 9.40 | 9.69 |
| Spreaders | 3.48 | 4.84 | 7.56 | 3.02 | 4.48 | 7.00 | 6.77 | 6.66 | 10.40 | 11.25 |
| Rear terminals | 3.55 | 4.94 | 7.72 | 3.28 | 4.88 | 7.63 | 7.76 | 8.26 | 12.90 | 15.16 |

Circuit breaker ( $\mathrm{I}_{\mathrm{cu}}>50 \mathrm{kA}$ )

|  | Power losses per pole (W) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| In (A) | 16 | 20 | 25 | 32 | 40 | 50 | 63 | 80 | 100 | 125 |
| Lugs | 3.51 | 4.89 | 7.64 | 3.15 | 4.69 | 7.33 | 7.28 | 7.49 | 11.70 | 13.28 |
| Spreaders | 3.54 | 4.93 | 7.71 | 3.26 | 4.85 | 7.58 | 7.68 | 8.13 | 12.70 | 14.84 |
| Rear termin | . 60 | 5.03 | 7.86 | 3.51 | 5.25 | 8.20 | 8.67 | 9.73 | 15.20 | 875 |

Note: power losses in the table above are referred and measured as described in the standard IEC 60947-2 (Annex G) for circuit-breakers. Values in the table are referred to a single phase.

Switch disconnectors


Note: power loss in the table above are referred and measured as described in the standard IEC 60947-3 for switches. Values in the table are referred to a single phase.

### 6.6 DERATINGS

according to IEC/EN 60947-1

### 6.6.1 Temperature

Rated current and his adjustment has to be considered relating to a rise or fall of ambient temperature and to a different version or installation conditions. The table below indicates the maximum long-time (LT) protection setting depending on the ambient temperature.

|  | Temperature $\mathbf{T a}\left({ }^{\circ} \mathbf{C}\right)$ |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{I}_{\mathbf{n}}$ (A) | $\mathbf{- 2 0}$ | $\mathbf{- 1 0}$ | $\mathbf{- 5}$ | $\mathbf{0}$ | $\mathbf{1 0}$ | $\mathbf{2 0}$ | $\mathbf{3 0}$ | $\mathbf{4 0}$ | $\mathbf{5 0}$ | $\mathbf{6 0}$ | $\mathbf{7 0}$ |
| $\mathbf{1 6}$ | 20 | 20 | 19 | 19 | 18 | 17 | 17 | 16 | 16 | 15 | 14 |
| $\mathbf{2 0}$ | 25 | 24 | 24 | 23 | 23 | 21 | 21 | 20 | 20 | 18 | 17 |
| $\mathbf{2 5}$ | 31 | 30 | 30 | 29 | 28 | 27 | 26 | 25 | 25 | 23 | 22 |
| $\mathbf{3 2}$ | 40 | 39 | 38 | 37 | 36 | 35 | 33 | 32 | 32 | 29 | 28 |
| $\mathbf{4 0}$ | 50 | 49 | 48 | 47 | 45 | 43 | 42 | 40 | 40 | 37 | 35 |
| $\mathbf{5 0}$ | 62 | 61 | 59 | 58 | 56 | 54 | 52 | 50 | 50 | 45 | 43 |
| $\mathbf{6 3}$ | 79 | 77 | 75 | 74 | 71 | 68 | 65 | 63 | 63 | 57 | 54 |
| $\mathbf{8 0}$ | 100 | 97 | 95 | 93 | 90 | 86 | 83 | 80 | 80 | 73 | 69 |
| $\mathbf{1 0 0}$ | 125 | 121 | 119 | 117 | 112 | 108 | 104 | 100 | 100 | 91 | 86 |
| $\mathbf{1 2 5}$ | 157 | 151 | 148 | 146 | 140 | 135 | 130 | 125 | 125 | 114 | 108 |

For derating temperature with other configurations, see table $A$.

### 6.6.2 Specific condition use

Climatic conditions
according to IEC/EN 60947-1 Annex Q, Cat. F subject to temperature, humidity, vibration, shock and salt mist.

## Pollution degree

for DPX³ 125 HP circuit breakers, degree 3, according to IEC/EN 60947-
2

### 6.6.3 Altitude

Altitude derating for $\mathrm{DPX}^{3}$ and $\mathrm{DPX}^{3}$-।

| Altitude (m) | $\mathbf{2 0 0 0}$ | $\mathbf{3 0 0 0}$ | $\mathbf{4 0 0 0}$ | $\mathbf{5 0 0 0}$ |
| :--- | :---: | :---: | :---: | :---: |
| $\mathrm{U}_{\mathrm{e}} \mathbf{( V )}$ | 690 | 590 | 520 | 460 |
| $\mathrm{I}_{\mathrm{n}}(\mathrm{A})\left(\mathrm{T}_{\mathrm{a}}=\mathbf{4 0}^{\circ} \mathrm{C} / 50^{\circ} \mathrm{C}\right)$ | $1 \times \mathrm{I}_{\mathrm{n}}$ | $0.98 \times \mathrm{I}_{\mathrm{n}}$ | $0.93 \times \mathrm{I}_{\mathrm{n}}$ | $0.9 \times \mathrm{I}_{\mathrm{n}}$ |

DPX ${ }^{3} 125$ HP thermal magnetic circuit breakers
DPX³-I 125 HP switch disconnectors
from 423600 to 4236 19; from 423640 to 4236 59; from 423680 to 423699 ; from 423700 to 4237 19; 4231 84; 4231 85;

## 7. CONFORMITY

$\mathrm{DPX}^{3} \mathrm{HP}$ range of product concerning circuit-breakers and switchdisconnectors exceed compliance with the IEC/EN standard 60947-2 and 60947-3 respectively. Certification available by IECEE CB-scheme or LOVAG Compliance scheme.
DPX ${ }^{3}$ HP respect the European Directives REACh, RoHS, RAEE.

For specific information, please contact Legrand support.

### 7.1 Marking

Product (both circuit breakers and switch disconnectors) are provided with labelling in full conformity to the referred standard and directives requirements by laser or sticker labels (for illustrative purposes only) as:

## Product laser label on front

-Manufacturer responsible
-Denomination, type product, code
-Standard conformity
-Standard characteristics declared
-Coloured identification of $\mathrm{I}_{\mathrm{cu}}$ at 415 V


## Product sticker label on side

-Manufacturer responsible
-Denomination and type product
-Standard conformity
-Mark/Licence (if any)
-Directive requirements
-Bar code identification product
-Manufacturing Country


## Packaging sticker label

-Manufacturer responsible
-Denomination and type product
-Mark/Licence (if any)
-Directive requirements
-Bar code identification product


DPX ${ }^{3} 125$ HP thermal magnetic circuit breakers
DPX³-I 125 HP switch disconnectors

Reference(s) :
from 423600 to 4236 19; from 423640 to 4236 59;
from 423680 to 423699 ; from 423700 to 4237 19;
4231 84; 4231 85;

## 8. EQUIPMENTS AND ACCESSORIES

### 8.1 Releases (for DPX ${ }^{3}$ 125/250 HP and DPX ${ }^{3}$ 160/250)

- shunt releases with voltage:

12 Vac and dc
ref. 421012
24 Vac and dc
48 Vac and dc
$110 \div 130 \mathrm{Vac}$
$220 \div 277$ Vac
$380 \div 480$ Vac
ref. 421013
ref. 421014
ref. 421015
ref. 421016
ref. 421017

Maximum power $=400 \mathrm{VA} / \mathrm{W}$

- undervoltage releases with voltage:

12 Vac and dc
ref. 421018
24 Vac and dc ref. 421019
ref. 421020
$110 \div 130$ Vac and dc ref. 421021
$220 \div 240$ Vac
ref. 421022
277 Vac
ref. 421023
$380 \div 415$ Vac
ref. 421024
ref. 421025
Maximum power $=4 \mathrm{VA}$
Circuit breaker opening time < 50 ms

UVR releases can be used on DPX3 125/250 HP starting from batch 19W15

- time-lag undervoltage releases $(800 \mathrm{~ms})$

Time-lag modules with voltage:
230 V ac
ref. 026190
400 V ac ref. 026191

Release
ref. 421098
(to be equipped with a time-lag module 0261 90/91)

### 8.2 Auxiliary contacts

(for DPX ${ }^{3}$ 125/250 HP and DPX3 160/250)

Changeover switch 3A - 250 VAC
ref. 421011

To show the state of the contacts or opening of the DPX3/DPX ${ }^{3}$-I and DPX ${ }^{3}$ HP/DPX³-I HP on a fault:

- Auxiliary contact (standard) OC
- Fault signal CTR

Auxiliary contact electrical characteristics

| Rated voltage ( $\mathrm{V}_{\mathrm{n}}$ ) | V (ac or dc) | 24 to 250 |
| :---: | :---: | :---: |
| Intensity (A) | 24 V dc | 5 |
|  | 48 V dc | 1.7 |
|  | 110 V dc | 0.5 |
|  | 230 V dc | 0.25 |
|  | 110 V ac | 4 |
|  | 230/250 V ac | 3 |

Configurations:
$\mathrm{DPX}^{3} 125 \mathrm{HP} \rightarrow 1$ auxiliary contacts +1 fault signal




4210 18... 25
421098


4210 12... 17


OC/CTR


(a) $\frac{14}{11}$ (c) OC

|  | B | A |
| :---: | :---: | :---: |
| UVR | $\boldsymbol{X}$ | $\boldsymbol{\swarrow}$ |
| ST | $\boldsymbol{X}$ | $\boldsymbol{\swarrow}$ |
| OC/CTR | $\boldsymbol{V}$ | $\boldsymbol{X}$ |

To get more information on auxiliary mounting procedures, please refer to product instruction sheet.

### 8.3 Universal keylocks

These keylocks must be used for all the accessories that can be locked:

> - rotary handle

For each of these, a specific accessory (indicated in the specific section of this datasheet) must be added in order to get the complete locking kits for the specific application.

- 1 lock +1 flat key with random mapping
- 1 lock +1 flat key with fixed mapping (EL43525)
- 1 lock +1 flat key with fixed mapping (EL43363)
- 1 lock +1 star key with random mapping
ref. 423880
ref. 423881
ref. 423882
ref. 423883

DPX ${ }^{3} 125$ HP thermal magnetic circuit breakers
DPX³-I 125 HP switch disconnectors
from 423600 to 4236 19; from 423640 to 4236 59;
from 423680 to 423699 ; from 423700 to 4237 19;
4231 84; 4231 85;

### 8.4 Rotary handles

Direct on DPX ${ }^{3}$

- Standard (black)
- For emergency use (red / yellow)
ref. 423870

Vari-depth handle IP55 (with auxiliary option)

- Standard (black)
ref. 423872
- For emergency use (red / yellow)
ref. 423873

Locking accessories (for rotary handle)

- Key lock accessory for vari-depth rotary handle
ref. 423805
(ref. 423805 is compatible with DPX 250 HP also)
Ref. 423805 must be used with universal keylocks to get the complete locking kit for rotary handle


### 8.5 Mechanical accessories

- Padlock (for locking in "OPEN" position) ref. 421049
(ref. 421049 is compatible with DPX 250 HP and DPX3 160/250)
- Sealable terminal shields:

$$
\begin{array}{ll}
\circ & \text { Set of } 2 \text { (for 3P) } \\
- & \text { Set of } 3 \text { (for 4P) }
\end{array}
$$

ref. 423893 ref. 423894

- Insulated shields:

$$
\begin{array}{ll}
\circ & \text { Set of } 2 \text { (for 3P) } \\
\circ & \text { Set of } 3 \text { (for 4P) }
\end{array}
$$

ref. 423834
ref. 423835
(ref. 4238 34/35 are compatible with DPX3 250 HP)

### 8.6 Connection accessories

## Cage terminals

- Set of 3 terminals for cables $50 \mathrm{~mm}^{2}$ max (solid) or $50 \mathrm{~mm}^{2} \max$ (flexible) $\mathrm{Cu} / \mathrm{Al}$
- Set of 4 terminals for cables $50 \mathrm{~mm}^{2}$ max (rigid)
ref. 423875 or $50 \mathrm{~mm}^{2}$ max (flexible) $\mathrm{Cu} / \mathrm{Al}$
- Set of 3 terminals (high capacity)
ref. 423876
for cables $70 \mathrm{~mm}^{2}$ max for Cu and $95 \mathrm{~mm}^{2}$ max for Al Section relative to maximum current is $70 \mathrm{~mm}^{2}$ (for $A /$ )
- Set of 4 terminals (high capacity)
ref. 423877
for cables $70 \mathrm{~mm}^{2}$ max for Cu and $95 \mathrm{~mm}^{2}$ max for Al Section relative to maximum current is $70 \mathrm{~mm}^{2}$ (for Al )

Spreaders (incoming or outcoming):

- $\quad$ Set of 3 (for 3P) ref. 623888
- $\quad$ Set of 4 (for 4P) ref. 623889

Rear terminals (incoming or outcoming):

- $\quad$ Set of 3 (for 3P)
- $\quad$ Set of 4 (for 4P)
ref. 423891
ref. 423892


### 8.7 Interlock mechanism

(for interlocking $2 \mathrm{DPX}^{3} 125 \mathrm{HP}$ or $2 \mathrm{DPX}^{3} 250$ HP breakers)
No frame mixing in interlock mechanism

- Interlock mechanism - standard version ref. 423827
(for fixed version DPX 3125 HP and DPX³ 250 HP)
- Interlock mechanism - for electronic module ref. 423828 (for fixed version DPX³ 125 HP and DPX³ 250 HP)
- Interlock plate for DPX ${ }^{3} 125 \mathrm{HP}$ ref. 423825

DPX ${ }^{3} 125$ HP thermal magnetic circuit breakers
DPX³-I 125 HP switch disconnectors

## Reference(s) :

from 423600 to 4236 19; from 423640 to 423659 ;
from 423680 to 4236 99; from 423700 to 4237 19;
4231 84; 4231 85;

## 9. CURVES

9.1.1 Thermal magnetic tripping curve (rated current $\mathrm{I}_{n}<=80 \mathrm{~A}$ )

$I_{c u}=36-50-70-100 \mathrm{kA} \quad \mathrm{I}_{\max }=125 \mathrm{~A} \quad 3-4 \mathrm{P} \quad \mathrm{U}_{\mathrm{e}}=415 \mathrm{Vac} \quad$ (IEC/EN 60947-2)

| Value | Description |
| :---: | :--- |
| t | time |
| I | current |
| $\mathrm{I}_{\mathrm{n}}$ | rated current |
| $\mathrm{I}_{\mathrm{r}}$ | long time setting current |
| curve 1 | characteristic with cold start |
| curve 2 | characteristic with hot start |

### 9.1.2 Thermal magnetic tripping curve (rated current $I_{n}>80 A$ )



| Value | Description |
| :---: | :--- |
| t | time |
| I | current |
| $\mathrm{I}_{\mathrm{n}}$ | rated current |
| $\mathrm{I}_{\mathrm{r}}$ | Iong time setting current |
| curve 1 | characteristic with cold start |
| curve 2 | characteristic with hot start |

DPX ${ }^{3} 125$ HP thermal magnetic circuit breakers
DPX³-I 125 HP switch disconnectors

## Reference(s) :

from 423600 to 4236 19; from 423640 to 4236 59;
from 423680 to 423699 ; from 423700 to 4237 19;
4231 84; 4231 85;
9.2.1 Pass-through specific energy characteristic curve (breaking capacity $\mathrm{I}_{\mathrm{cu}}<=50 \mathrm{kA}$ )

Update: 04/09/2019


| Value | Description |
| :---: | :--- |
| $\mathrm{I}_{\mathrm{cc}}$ | short circuit current |
| $\mathrm{I}^{2} \mathrm{t}\left(\mathrm{A}^{2} \mathrm{~s}\right)$ | pass-through specific energy |

DPX $^{3} 125$ HP thermal magnetic circuit
breakers
DPX $^{3}$-I 125 HP switch disconnectors
9.2.2 Pass-through specific energy characteristic curve (breaking capacity $\mathrm{I}_{\mathrm{cu}}>50 \mathrm{kA}$ )

Update: 04/09/2019


| Value | Description |
| :---: | :--- |
| $\mathrm{I}_{\mathrm{cc}}$ | short circuit current |
| $\mathrm{I}^{2} \mathrm{t}\left(\mathrm{A}^{2} \mathrm{~s}\right)$ | pass-through specific energy |

DPX ${ }^{3} 125$ HP thermal magnetic circuit breakers
DPX³-I 125 HP switch disconnectors

Reference(s) :
from 423600 to 4236 19; from 423640 to 4236 59;
from 423680 to 423699 ; from 423700 to 4237 19;
4231 84; 4231 85;
9.3.1 Cut-off peak current characteristic curve (kA) (breaking capacity $\mathrm{I}_{\mathrm{cu}}<=50 \mathrm{kA}$ )

Update: 04/02/2020


| Value | Description |
| :---: | :--- |
| $\mathrm{I}_{\mathrm{cc}}$ | estimated short circuit symmetrical current (RMS value) |
| $\mathrm{I}_{\mathrm{p}}$ | maximum short circuit peak current |
|  | maximum prospective short circuit peak current <br> corresponding at the power factor |
|  | maximum real peak short circuit current |

DPX ${ }^{3} 125$ HP thermal magnetic circuit breakers
DPX³-I 125 HP switch disconnectors

Reference(s) :
from 423600 to 4236 19; from 423640 to 4236 59;
from 423680 to 423699 ; from 423700 to 4237 19;
4231 84; 4231 85;
9.3.2 Cut-off peak current characteristic curve (kA) (breaking capacity $I_{c u}>50 \mathrm{kA}$ )

Update: 04/02/2020


$\mathrm{I}_{\mathrm{cu}}=36-50-70-100 \mathrm{kA} \quad \mathrm{I}_{\max }=125 \quad 3-4 \mathrm{P} \quad \mathrm{U}_{\mathrm{e}}=415 \mathrm{Vac}$ (IEC/EN 60947-2)

| Value | Description |
| :---: | :--- |
| $\mathrm{I}_{\mathrm{cc}}$ | estimated short circuit symmetrical current (RMS value) |
| $\mathrm{I}_{\mathrm{p}}$ | maximum short circuit peak current |
|  | maximum prospective short circuit peak current <br> corresponding at the power factor |
|  | maximum real peak short circuit current |

DPX ${ }^{3} 125$ HP thermal magnetic circuit breakers
DPX³-I 125 HP switch disconnectors

Reference(s) :
from 423600 to 4236 19; from 423640 to 4236 59;
from 423680 to 423699 ; from 423700 to 4237 19;
4231 84; 4231 85;

## A) Derating Temperature and configurations

|  | Ambient temperature |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $30^{\circ} \mathrm{C}$ |  | $40^{\circ} \mathrm{C}$ |  | $50^{\circ} \mathrm{C}$ |  | $60^{\circ} \mathrm{C}$ |  | $70^{\circ} \mathrm{C}$ |  |
| Fixed version | $\mathrm{I}_{\text {max }}(\mathrm{A})$ | $\mathrm{I}_{\mathrm{r}} / \mathrm{I}_{\mathrm{n}}$ |
| Cage terminals, flexible cable | 130 | 1.04 | 125 | 1 | 125 | 1 | 114 | 0.91 | 108 | 0.86 |
| Cage terminals, rigid cable | 130 | 1.04 | 125 | 1 | 125 | 1 | 114 | 0.91 | 108 | 0.86 |
| Lugs, flexible cable | 130 | 1.04 | 125 | 1 | 125 | 1 | 114 | 0.91 | 108 | 0.86 |
| Lugs, rigid cable | 130 | 1.04 | 125 | 1 | 125 | 1 | 114 | 0.91 | 108 | 0.86 |
| Spreaders, flexible cable | 130 | 1.04 | 125 | 1 | 125 | 1 | 114 | 0.91 | 108 | 0.86 |
| Spreaders, rigid cable | 130 | 1.04 | 125 | 1 | 125 | 1 | 114 | 0.91 | 108 | 0.86 |
| Rear flat terminals, flexible cable | 130 | 1.04 | 125 | 1 | 125 | 1 | 114 | 0.91 | 108 | 0.86 |

For further technical information, please contact Legrand technical support.
B) Breaking capacity in DC (kA)

|  |  | $\mathbf{1}$ pole * | $\mathbf{2}$ poles in series * |  |  | $\mathbf{3}$ poles in series * |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{I}_{\mathrm{cu}}(\mathrm{kA})$ | $\mathbf{I}_{\mathbf{n}}(\mathbf{A})$ | $\mathbf{6 0} \mathbf{V}$ | $\mathbf{6 0} \mathbf{V}$ | $\mathbf{1 1 0} \mathbf{V}$ | $\mathbf{2 5 0} \mathbf{V}$ | $\mathbf{1 1 0} \mathbf{V}$ | $\mathbf{2 5 0} \mathrm{V}$ | $\mathbf{5 0 0} \mathbf{V}$ |
| $\mathbf{3 6}$ | $\mathbf{1 6} \div \mathbf{1 2 5}$ | 35 | 36 | 35 | 10 | 35 | 10 | 10 |
| $\mathbf{5 0}$ | $\mathbf{1 6} \div \mathbf{1 2 5}$ | 35 | 50 | 35 | 10 | 35 | 10 | 10 |
| $\mathbf{7 0}$ | $\mathbf{1 6} \div \mathbf{1 2 5}$ | 35 | 50 | 35 | 10 | 35 | 10 | 10 |
| $\mathbf{1 0 0}$ | $\mathbf{1 6} \div \mathbf{1 2 5}$ | 35 | 50 | 35 | 10 | 35 | 10 | 10 |

* Connection modality of the DC breaker:

These values are applied to DC networks insulated from the ground (this diagram applies to both $3 P$ and $4 P$ circuit breakers):


1 pole
2 poles in series




3 poles in series

