

87045 LIMOGES Cedex

Phone :+33 05 55 06 87 87 - Fax :+33 05 55 06 88 88

Reference(s): from 422 298 to 422 48 and from 422 538 to 422 584

DPX³ 1600 electronic circuit breakers

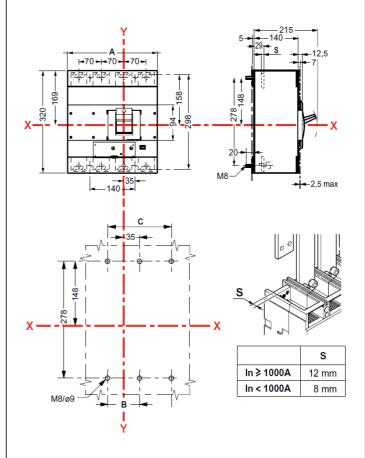
CONTENTS	PAGES
1. USE	1
2. RANGE	1
3. DIMENSIONS AND WEIGHTS	1
4. OVERVIEW	2
5. ELECTRICAL CONNECTIONS	2
6. ELECTR.AND MECH- CHARACTERISTICS	4
7. ELECTRONIC PROTECTION UNIT	5
8. CONFORMITY	8
9. EQUIPMENTS AND ACCESSORIES	9
10. CURVES	12

1. USE

DPX³ platform, for premium segment, is able to cover extended ranges in terms of breaking capacities and rated currents, make protection suitable for different levels of power involved in installations.

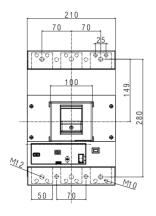
DPX³ platform provide easy assembly procedures during the phase of installation and mounting of accessories, suitable for professional use.

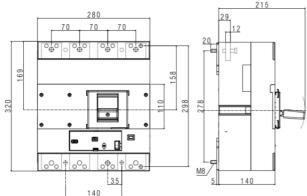
2. RANGE

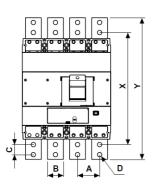

Circuit breaker

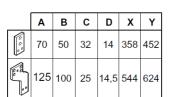
	S	1		2	S2 + m	easure	S	g	Sg + m	
	36kA		36	kA	36	kA	36	kA	36	kA
I _n (A)	3P	4P								
500	422538	422544	422298	422304	422346	422352	422394	422400	422442	422448
630	422539	422545	422299	422305	422347	422353	422395	422401	422443	422449
800	422540	422546	422300	422306	422348	422354	422396	422402	422444	422450
1000	422541	422547	422301	422307	422349	422355	422397	422403	422445	422451
1250	422542	422548	422302	422308	422350	422356	422398	422404	422446	422452
1600	422543	422549	422303	422309	422351	422357	422399	422405	422447	422453
	50	kA								
I _n (A)	3P	4P								
500	422550	422556	422310	422316	422358	422364	422406	422412	422454	422460
630	422551	422557	422311	422317	422359	422365	422407	422413	422455	422461
800	422552	422558	422312	422318	422360	422366	422408	422414	422456	422462
1000	422553	422559	422313	422319	422361	422367	422409	422415	422457	422463
1250	422554	422560	422314	422320	422362	422368	422410	422416	422458	422464
1600	422555	422561	422315	422321	422363	422369	422411	422417	422459	422465
	70	kA								
I _n (A)	3P	4P								
500	422562	422568	422322	422328	422370	422376	422418	422424	422466	422472
630	422563	422569	422323	422329	422371	422377	422419	422425	422467	422473
800	422564	422570	422324	422330	422372	422378	422420	422426	422468	422474
1000	422565	422571	422325	422331	422373	422379	422421	422427	422469	422475
1250	422566	422572	422326	422332	422374	422380	422422	422428	422470	422476
1600	422567	422573	422327	422333	422375	422381	422423	422429	422471	422477
	100)kA	100)kA	100	kA	100	kA	100)kA
I _n (A)	3P	4P								
500	422574	422580	422334	422340	422382	422388	422430	422436	422478	422484
630	422575	422581	422335	422341	422383	422389	422431	422437	422479	422485
800	422576	422582	422336	422342	422384	422390	422432	422438	422480	422486
1000	422577	422583	422337	422343	422385	422391	422433	422439	422481	422487
1250	422578	422584	422338	422344	422386	422392	422434	422440	422482	422488

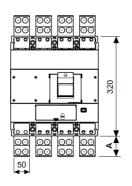
3. DIMENSIONS AND WEIGHTS

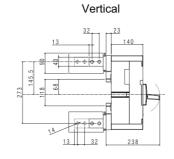

3.1 Dimensions

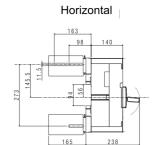

Implantation

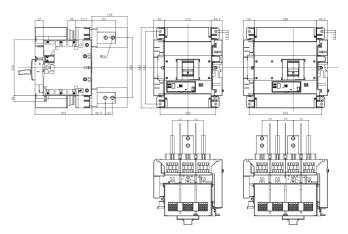



Reference(s): from 422 298 to 422 48 and from 422 538 to 422 584


Front terminals, fixed version







Side view, flat rear terminals

Draw-out version, rear terminals

3.2 Weights

	Weights (Kg)					
	3	Р	4P			
Configuration	I _n ≤1250A	I _n = 1600A	I _n ≤1250A	I _n = 1600A		
Circuit breaker (fixed version)	16	17	20	21.5		
Draw-out base (with front terminals)*	18	18	22	22		
Draw-out base (with rear terminals)*	21.7	21.7	26.2	26.2		
Draw-out debro-lift mechanism *	9.9	9.9	11.2	11.2		
* to add to fixed version						

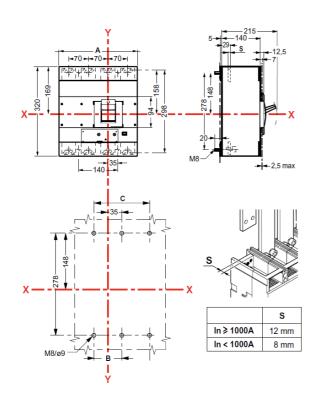
4. OVERVIEW

4.1 Supplied with:

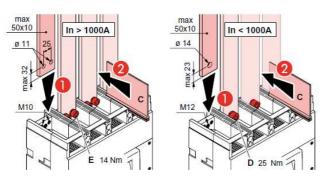
- fixing screws (4 for 3P and 4P)
- screws for connections (6 for 3P and 8 for 4P)
- phase insulators (2 for 3P and 3 for 4P)

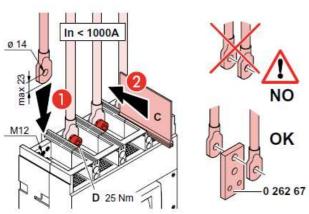
5. ELECTRICAL CONNECTIONS

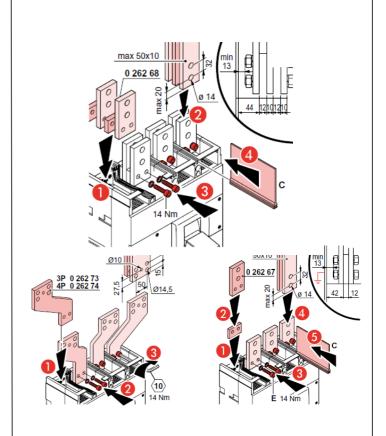
5.1 Mounting possibilities

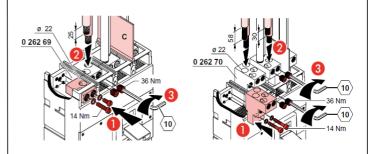

On plate:

- Vertical
- Horizontal
- · Supply invertor type


Reference(s): from 422 298 to 422 48 and from 422 538 to 422 584


5.2 Mounting


(see instruction sheet for detailed mounting procedures)


Busbars/cable lugs:

Cables:

Flexible Conductors	W.	2x95mm² 4x95mm²	MIN	2x185mm² 4x185mm²	MAX
Rigid Conductors	$\qquad \qquad \Box$	2x120mm² 4x120mm²	MIN	2x240mm² 4x240mm²	MAX

Reference(s): from 422 298 to 422 48 and from 422 538 to 422 584

6. ELECTRICAL AND MECHANICAL CHARACTERISTICS

Circuit Breaker	DPX ³ 1600 TM F/N/H/L
Circuit Breaker	(36kA, 50kA, 70kA, 100kA)
Rated current (A)	500, 630, 800, 1000, 1250, 1600
Poles	3 - 4
Pole pitch (mm)	70
Rated insulation voltage (50/60Hz) U _I (V)	1000
Rated operating voltage (50/60Hz) U _e (V)	690
Rated impulse withstand current U _{Imp}	8
Rated frequency (Hz)	50 - 60
Operating temperature (°C)	-25 ÷ 70
Mechanical endurance (cycles)	10000
Mechanical endurance with motor control	5000
Electrical endurance at I _n (cycles)	4000
Electrical endurance at 0.5 ln (cycles)	8000
Utilization category	В
Suitable for isolation	Yes
Type of protection	Electronic
Thermal type protection	Adjustable
Thermal adjustment I _r [x I _n]	0,4 ÷ 1
Thermal adjustment t _r [s]	3-5-10-15-20-25-30
Thermal time tripping at 2xIn (single pole) [s]	33s±20% if tr = 3s@12lr
Magnetic type protection	Adjustable
Magnetic adjustment I _{sd} [x I _r]	1.5 ÷ 10
Time adjustement t _{sd} (t=k o l²t=k) [s]	0-0.1-0.2-0.3-0.4-0.5
Minimum release single pole	1.2 lsd
latantanas in algatrania adii atmant l	15 kA (In <=1250A);
Istantaneous electronic adjustment I _I	20kA (ln=1600A)
Neutral protection for 4P (%I _{th} of phase pole)	100
	210(3P)/280 (4P) x 320x 140

The maximum admissible (absolute) temperature is 125°C (for detail, see IEC 60947-1 and 60947-2)

DPX³ product line has the possibility to supply both in "direct" and "reverse" feed.

If "direct", the word "LINE" needs to be marked on supply terminals (normally the top ones), as well as "LOAD" has to be written on the output terminals to be connected to the load (normally the bottom ones).

If "reverse", any indications about LINE / LOAD are NOT expected on the product.

6.1 Breaking capacity (kA)

		Br	eaking capa	acity (kA) &	Ics		
			3P-	-4P			
	U _e /I _{cu} (I _{cu} letter)	36kA (F)	50kA (N)	70kA (H)	100kA (L)		
	220/240 V AC	70	100	105	150		
	380/415 V AC	36	50	70	100		
	440/460 V AC	30	45	65	80		
	480/500 V AC	25	35	45	55		
IEC 60947-2	480/550 V AC	20	24	28	30		
	600 V AC	20	24	28	30		
	690V AC	14	20	22	25		
	I _{cs} (% I _{cu})	100	100	100	70		
	Rated making capacity under short circuit I _{cm}						
	I _{cm} (kA) at 415V	76.5	105	154	220		
	220/240 V AC	70	100	105	150		
NEMA AB-1	480/500 V AC	25	35	45	55		
	690 V AC	14	20	22	25		

6.3 Rated current (In) at 40°C / 50°C

	Phases limit trip current							
	therm	nal (I _r)	magnetic (I _i)					
In (A)	0.4 x I _n 1 x I _n		1.5 x I _r	10 x I _r				
500	200	500	750	5000				
630	252	630	945	6300				
800	320	800	1200	8000				
1000	400	1000	1500	10000				
1250	500	1250	1875	12500				
1600	640	1600	2400	16000				

^{*} For neutral adjustment, as explained in technical sheet, please consider the values ratios 100% on set currents.

6.3 Load operations

Force on handle	In ≤ 400A	In ≥ 500A
Opening operation (N)	80	130
Closing operation (N)	180	210
Restore operation (N)	145	200

6.4 Electrodynamic forces

The table below shows an indication of suggested distances to keep between the breaker and the first fixing point of the conductor and bars in order to reduce the effects of the electrodynamic stresses that may be created during a short circuit. In the realization of anchorage system it is recommend the use of isolators suitable for the type of conductor used and the operating voltage.

I _{cc} (kA)	Maximum Distance (mm)
36	350
50	300
70	250
100	200

According to conductor type and bar system (except Legrand bar kits), the choice of the distance to keep is to be calibrated by the installer. Also installer must take into account the weight of the conductors so that this does not affect the electrical junction between the conductor itself and the connection point.

Reference(s): from 422 298 to 422 48 and from 422 538 to 422 584

6.5 Power losses per pole under In

		Power losses per pole (W)					
	I _n (A) 500 630 800 1000 1250 1600						
Front terminals - Fixed version	11.6	18.5	29.8	47.6	74.4	65.3	
Rear terminals - Fixed version	11.5	18.3	29.4	47.0	73.4	58.9	
Front terminals - D-O version	20.0	31.8	51.2	82.0	128.1	112.6	
Rear terminals - D-O version	15.0	23.8	38.4	60.0	93.8	97.3	

Note: power loss in the table above are referred and measured as described in the standard IEC 60947-2 (Annex G) for circuit-breakers. Values in the table are referred to a single phase.

6.6 DERATINGS

6.6.1 Temperature

Rated current and his adjustment has to be considered relating to a rise or fall of ambient temperature and to a different version or installation conditions. The table below indicates the maximum long-time (LT) protection setting depending on the ambient temperature.

	Temperature Ta (°C)					
I _n (A)	up to 50	up to 50 60				
500	500	500	500			
630	630	630	630			
800	800	800	720			
1000	1000	1000	900			
1250	1250	1250	938			
1600	1600	1600	1360			

For derating temperature with other configurations, see table A.

6.6.2 Specific condition use

Climatic conditions

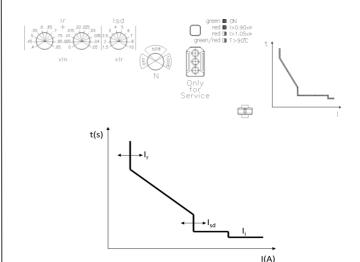
according to IEC/EN 60947-1 Annex Q, Cat. F subject to temperature, humidity, vibration, shock and salt mist.

Electromagnetic disturbances (EMC)

for DPX3 1600 circuit breakers, according to IEC/EN 60947-2 Annex F

Pollution degree

for DPX 3 1600 circuit breakers, degree 3, according to IEC/EN 60947-2


6.6.3 Altitude

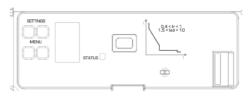
Altitude derating for DPX3 a

Altitude (m)	2000	3000	4000	5000
U _e (V)	690	590	520	460
I _n (A) (T _a = 40°C/50°C)	1 x I _n	0.98 x I _n	0.93 x I _n	0.9 x I _n

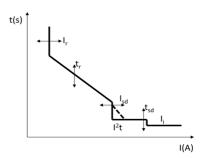
7. ELECTRONIC PROTECTION UNIT

7.1 Version S1 - Adjustment of Ir, Isd

Long delay protection against overloads with an adjustable threshold bases on the RMS value of the current:


 $I_r = 0.4 \div 1 I_n \text{ (steps 1A)}$

Short delay protection against short-circuits with an adjustable I_{sd} threshold:


• I_{sd} = 1.5 - 2 - 2.5 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 x I_r (11 steps)

Instantaneous protection with fixed threshold:

- $500A I_i = 15kA$,
- 630,800A l_i = 15kA
- 1000A I_i = 15kA,
- 1250A l_i= 15kA,
 1600A l_i= 20kA
- 7.2 Version S2 Adjustment of Ir, Tr, Isd, Tsd

LCD display with adjustment buttons, battery case and USB port.

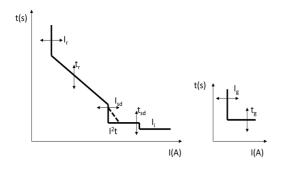
Long delay protection against overloads with an adjustable threshold bases on the RMS value of the current:

- $I_r = 0.4 \div 1 I_n \text{ (steps 1A)}$
- T_r=3 30s (3 5 10 15 20 25 30) (7 steps)

Reference(s): from 422 298 to 422 48 and from 422 538 to 422 584

Short delay protection against short-circuits with an adjustable I_{sd} threshold:

- $I_{sd} = 1.5 2 2.5 3 4 5 6 7 8 9 10 x I_r$ (11 steps)
- $T_{sd} = 0 100 200 300 400 500 \text{ ms } (I = K)$
- $T_{sd} = 0 100 200 300 400 500 \text{ ms} (l^2t = K)$


Instantaneous protection with fixed threshold:

- 500A I: = 15kA.
- $630,800A I_i = 15kA,$
- $1000A I_i = 15kA$,
- 1250A I_i= 15kA,
- 1600A I_i= 20kA

7.3 Version Sg - Adjustment of Ir, Tr, Isd, Tsd, Ig, Tg

LCD display with adjustment buttons, battery case and USB port.

Long delay protection against overloads with an adjustable threshold bases on the RMS value of the current:

- $I_r = 0.4 \div 1 I_n \text{ (steps 1A)}$
- $T_r = 3 30s (3 5 10 15 20 25 30)$ (7 steps)

Short delay protection against short-circuits with an adjustable I_{sd} threshold:

- $I_{sd} = 1.5 2 2.5 3 4 5 6 7 8 9 10 x I_r$ (11 steps)
- $T_{sd} = 0 100 200 300 400 500 \text{ ms} (I = K)$
- $T_{sd} = 0 100 200 300 400 500 \text{ ms} (l^2t = K)$

Instantaneous protection with fixed threshold:

- 500A I: = 15kA
- $630,800A I_i = 15kA,$
- $1000A I_i = 15kA$,
- 1250A I_i= 15kA,
- 1600A I = 20kA

Measure of ground fault:

- $l_g: 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 \times l_n$ (9 steps) and OFF
- $T_g: 0.1 0.2 0.3 0.4 0.5 1 s$

Together with above protections, activated in case of electric faults, the trip unit also integrates self-protection for:

- Over temperature : in case the internal temperature of protection unit exceed 95°C;
- Auto diagnostics: in case embedded watchdog circuit detects internal malfunctions, which could compromise the correct working of microcontroller.

General remarks on protection unit

The protection units S1/S2/Sg are normally supplied by the internal current transformers (CTs).

When the current flowing through the circuit breaker is greater than 12% of the maximum power (20% of In for single phase load), the internal current supply ensures all operation of the protection unit, included LED status, display indications(*) and diagnostic functions (e.g. trip test).

(*)Display backlight and integrated measure (if available) are instead guaranteed starting from 20% of the maximum power (35% of In for single phase load), in absence of any other supply. In any case the external power supply is strongly recommended for the correct working of measurement, as well as RS485 communication.

For version S2/Sg, to ensure the same performance when the load is less than 12% of the maximum power (20% of In for single phase load) to grant complete functions, one of the following optional power supplies can be used:

- (*)external Auxiliary power supplier or, alternatively, Modbus communication interface.
- (*)power supply temporarily connected to frontal USB socket, connected to a 5V DC power bank or PC.

(*) available only for S2/Sg versions

Reference(s): from 422 298 to 422 48 and from 422 538 to 422 584

In the electronic unit protection type S2/Sg, an energy metering central unit, if available, is integrated.

The possible parameters that can be measured are listed in the following table:

Measured	UNIT	DESCRIPTION
l ₁	Α	L1 realtime measured value
I ₂	Α	L2 realtime measured value
l ₃	Α	L3 realtime measured value
I _N (4P)	Α	N realtime measured value
I _G	Α	G realtime measured value
U ₁₂ U ₂₃ U ₃₁ (3P)	٧	Phase to Phase Voltage
V ₁₂ V ₂₃ V ₃₁ (4P)	٧	Voltage
Freq.	Hz	Frequency
P _{Tot}	kW	Active Power
Q _{Tot}	kvar	Reactive Power
PF		Power Factor
$E_p \downarrow$	kWh	Consumed active energy
E _p ↑	kWh	Returned active energy
$E_q \downarrow$	kvar h	Consumed reactive energy
E _q ↑	Kvar h	Returned reactive energy
THDU ₁₂ /THDU ₂₃ /THDU ₃₁ (3P)	%	Chained Voltage THD
THDV _{1N} /THDV _{2N} /THDV _{3N} (4P)	%	Voltage THD
THDI ₁ /THDI ₂ /THDI ₃ /THDI _N	%	Current THD
MEM	A - ℃	Cause of the last intervention and its value

Function performance class according to IEC 61557-12

Function symbol	Performance class	Measurement range		Other complementary characteristics			ristics					
			0	PX ³ 1600	A		I _{max} PMD					
I _n		630A	800A	1000A	1250A	1600A	630A	800A	1000A	1250A	1600A	
Р	1	0.5kW	0.5kW	0.5kW	0.5kW	0.5kW	750A	960A	1200A	1500A	1920A	
P	1	900kW	1.15MW	1.4MW	1.8MW	2.3MW		I _b =400A	, U _n =400V	, f _n =50Hz		
04.0	2	0.5kvar	0.5kvar	0.5kvar	0.5kvar	0.5kvar	750A	960A	1200A	1500A	1920A	
QA, Q _v	2	900kW	1.15MW	1.4MW	1.8MW	2.3MW		I _b =250A	, U _n =400V	, f _n =50Hz		
-	4				750A	960A	1200A	1500A	1920A			
Ea	1		U	999 GW	/n			I _b =400A	, U _n =400V	, f _n =50Hz		
50. F	_			000 6111	h		750A	960A	1200A	1500A	1920A	
ERA, E _{rV}	2		0999 GW/h		I _b =400A, U _n =400V, f _n =50Hz							
f	0.02		5060 Hz									
		20A	20A	20A	20A	20A	750A	960A	1200A	1500A	1920A	
1	1	750A	950A	1200A	1500A	1950A	50A I _b =400A, U _n =400V, f _n =50			, f _n =50Hz	-tz	
		20A	20A	20A	20A	20A	750A	960A	1200A	1500A	1920A	
I _N	1	750A	950A	1200A	1500A	1950A		I _b =400A	, U _n =400V	, f _n =50Hz	•	
U	0.5		88690V				-					
						750A	960A	1200A	1500A	1920A		
P _{FA}	0.5		•			I _b =400A	, U _n =400V	, f _n =50Hz				
THDu	5		110690V					-				
TUD	r	400A	400A	400A	400A	400A						
THDi	5	630A	530A 800A 1000A 1250A 1600A			<u> </u>						

Reference(s): from 422 298 to 422 48 and from 422 538 to 422 584

8. CONFORMITY

DPX³ range of product concerning circuit-breakers exceed compliance with the EN/IEC standard 60947-2 and 60947-3 respectively.

Certification available by IECEE CB-scheme or LOVAG Compliance scheme.

Marks as CCC (China), EAC (Eurasian Federation) or different local certification are available.

 $\mathsf{DPX^3}$ are in conformity with the Lloyds Shipping Register, RINA and Bureau Veritas Marine.

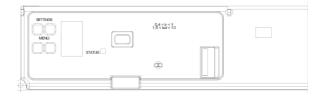
DPX³ respect the European Directives REACh, RoHS, RAEE and Product Environment Product (PEP Ecopassport) are available.

For specific information, please contact Legrand support.

8.1 Marking

Product (both circuit breakers and switch disconnectors) are provided with labelling in full conformity to the referred standard and directives requirements by laser or sticker labels as:

Product laser label on front


- -Manufacturer responsible
- -Denomination, type product, code
- -Standard conformity
- -Standard characteristics declared
- -coloured identification of Icu at 415V

S1 release:

S2/Sg release:

Product sticker label on side

- -Manufacturer responsible
- -Denomination and type product
- -Standard conformity
- -Mark/Licence (if any)
- -Directive requirements
- -bar code identification product
- -Manufacturing Country

Mark sticker label on side

- -Product code
- -Mark/Licence (if any)
- -Country deviation, if any

Packaging sticker label

- -Manufacturer responsible
- -Denomination and type product
- -Standard conformity
- -Mark/Licence (if any)
- -Directive requirements
- -bar code identification product

Reference(s): from 422 298 to 422 48 and from 422 538 to 422 584

9. EQUIPMENTS AND ACCESSORIES

9.1 Releases (for DPX³ 630 / DPX³ 1600)

shunt releases with voltage:

- Chant Toloacce With Voltage.	
24 Vac and dc	ref. 4 222 39
48 Vac and dc	ref. 4 222 40
110÷130 Vac and dc	ref. 4 222 41
220÷250 Vac and dc	ref. 4 222 42
380÷440 Vac and dc	ref. 4 222 43

Shunt releases electrical characteristics				
Rated voltage (U _c)	Both ac and dc: 24V/48V/110÷130V/220÷250V/380÷440V			
Voltage range (%U _c)	70 ÷ 110			
Intervention time (ms)	≤ 50			
Power consumption (W/VA)	300			
Minimum opening time (ms)	50 ms			
Insulation voltage (kV)	2,5			

undervoltage releases with voltage:

24 V dc		ref. 4 222 44
24 V ac		ref. 4 222 45
48 V dc		ref. 4 222 46
110 - 125 V ac		ref. 4 222 47
220 - 240 V ac		ref. 4 222 48
380 - 415 V ac		ref. 4 222 49

Undervoltage relases electrical characteristics				
Rated voltage (U _c)	ac: 24V/110÷125V/220÷240V/380÷415V dc: 24V/48V			
Voltage range (%Uc)	85 ÷ 110			
Minimum opening time (ms)	50			
Power consumption (W/VA)	1.6/5			

time-lag undervoltage releases (800 ms)

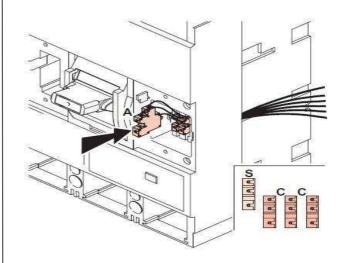
Time-lag modules with voltage:

230 V ac ref. 0 261 90 400 V ac ref. 0 261 91

Universal Release ref. 4 226 23 (to be equipped with a time-lag module 0 261 90/91)

9.2 Auxiliary contacts (for DPX³ 630 / DPX³ 1600)

Changeover switch 3A – 250 VAC ref. 4 210 11


To show the state of the contacts or opening of the DPX^3/DPX^3 -I on a fault:

Auxiliary contact (standard)
 Fault signal
 CTF

Auxiliary contact electrica characteristics			
Rated voltage (V _n) V (ac or dc) 24 to 25			
	24 V dc	5	
	48 V dc	1.7	
Intonsity (A)	110 V dc	0.5	
Intensity (A)	230 V dc	0.25	
	110 V ac	4	
	230/250 V ac	3	

Configurations:

DPX³ 1600 → 3 auxiliary contacts + 1 fault signal + 1 release

To get more information on auxiliary mounting procedures, please refer to product instruction sheet.

9.3 Universal keylocks

These keylocks must be used for all the accessories that can be locked:

- rotary handle
- motor operator
- plug-in mechanism
- draw-out mechanism

For each of these, a specific accessory (indicated in the specific section of this datasheet) must be added in order to get the complete locking kits for the specific application.

•	1 lock + 1 flat key with random mapping	ref. 4 238 80
•	1 lock + 1 flat key with fixed mapping (EL43525)	ref. 4 238 81
•	1 lock + 1 flat key with fixed mapping (EL43363)	ref. 4 238 82
•	1 lock + 1 star key with random mapping	ref. 4 238 83

Reference(s): from 422 298 to 422 48 and from 422 538 to 422 584

9.4 Rotary handles

Direct on DPX3 (with auxiliary option)

Standard (black) ref. 0 262 61

Vari-depth handle IP55 (with auxiliary option)

• Standard (black) *ref. 0 262 83*

For emergency use (red / yellow)
 adapting on standard handle ref. 0 262 84

Locking accessories (for vary-depth handle with auxiliary option)

Key lock accessory for vari-depth rotary handle ref. 4 228 07

Ref. 4 238 07 must be used with universal keylocks to get the complete locking kit for rotary handle

9.5 Motor-driven handles

Factory assembled

Front operated

Voltage 230 V AC ref. 0 261 54

Customer assembled

Front operated

•	Voltage	24 V AC and DC (I _n ≤ 1250A)	ref. 0 261 24
•	Voltage	48 V AC and DC (I _n ≤ 1250A)	ref. 0 261 25
•	Voltage	110 V AC and DC (I _n ≤ 1250A)	ref. 0 261 26
•	Voltage	220 V AC and DC (I _n ≤ 1250A)	ref. 0 261 23
•	Voltage	24 V AC and DC (I _n = 1600A)	ref. 0 261 19
	Voltage Voltage	24 V AC and DC (I _n = 1600A) 48 V AC and DC (I _n = 1600A)	ref. 0 261 19 ref. 0 261 28
•	•		

Locking accessories

Key lock accessory for motor operator ref. 4 228 06

Ref. 4 228 06 must be used with universal keylocks to get the complete locking kit for motor operator

9.6 Mechanical accessories

Phase insulators

• Set of 3 ref. 0 262 66

Sealable terminal shields

Set of 2 3P
 Set of 2 4P
 ref. 0 262 64
 ref. 0 262 65

Padlock

Accessories to lock in open position ref. 0 262 60

Terminal covers to guarantee IP20

Set of 2 3P
 Set of 2 4P
 ref. 4 225 91
 ref. 4 225 91

External neutral ref. 4 225 92

9.7 Connection accessories

Cage terminals

 Set of 4 terminals for cables 2x240mm² max (rigid) or 2x185mm² max (flexible) (Cu/Al) ref. 0 262 69

 Set of 4 terminals for cables 4x240mm² max (rigid) or 4x185mm² max (flexible) (Cu/Al) ref. 0 262 70

Extended front terminals

Short terminals for 500 - 1250A (2 bars max. per pole)

ref. 0 262 67

Long terminals for 1600A (3 bars max. per pole) ref. 0 262 68

Spreaders

Set of 3 (incoming or outgoing 3P)
 Set of 4 (incoming or outgoing 4P)
 ref. 0 262 73
 ref. 0 262 74

Rear terminals

(use to connect fixed version with front terminals into fixed version with rear terminal)

· Set of swivel terminals, incoming or outgoing

3P ref. 0 263 80 4P ref. 0 263 82

Set of flat rear terminals, incoming or outgoing

3P ref. 0 263 81 4P ref. 0 263 83

Cage terminal use specifications

DPX ³ 1600				
Type of cage	Cable standar	d suggested cross s	ection (mm²)*	
terminal	In (A)	Cu	Al	
	500	2x150	2x240	
	630	2x185	\	
Standard	800	2x240	\	
Standara	1000	\	\	
	1250	\	\	
	1600	\	\	
	500	2x150	2x240	
	630	2x185	3x240	
High	800	2x240	3x240	
capacity	1000	4x150	4x240	
	1250	4x185	\	
	1600	4x240	\	

* The suggested cross section are in compliance with standard IEC60947-1 (ed.6 2020/04) and IEC60947-2 (ed.5.1 2019/07)

DPX ³ 1600				
Type of cage	Dimensions limits of cable for cage terminals			
terminal	MIN/MAX cross section (mr			
	Flexible	Rigid		
Standard	95 mm² / 185 mm²	70 mm² / 240 mm²		
High capacity	95 mm² / 185 mm²	70 mm² / 240 mm²		

9.8 Draw-out version

(A DPX³ draw-out version is a plug-in DPX³ fitted with a "Débro-lift" mechanism which can be used to withdraw the DPX³ while keeping it on its base)

Draw-out base

Base for DPX³ 1600 equipped with "Débro-lift" mechanism

Front terminals
 3P

3P ref. 4 225 86 4P ref. 4 225 87

Rear terminals

3P ref. 4 225 88 4P ref. 4 225 89

Reference(s): from 422 298 to 422 48 and from 422 538 to 422 584

"Débro-lift" mechanism

To be fitted on a DPX3 1600 fixed version in order to obtain the

movable part of a drawout circuit breaker

Mobile part for draw-out version

3P 4P

ref. 4 225 93 ref. 4 225 94

Key lock for "Débro-lift" mechanism

One key for DPX³ only (enable locking in draw - out position)

Key lock accessory for draw-out

(frontal masks for motor operator or rotary handle) ref. 4 228 09

Key lock accessory for draw-out ref. 4 228 10

Ref. 4 228 09 and 4 228 10 must be used with universal keylocks to get the complete locking kit for draw-out version

Accessories for "Débro-lift" mechanism

•	Isolated handle for drawing-out	ref 0 265 75
•	Signal contact (plugged-in / drawn-out)	ref 0 265 74
•	Set of connectors (8 contacts)	ref 0 263 99
•	Set of connectors (6 contacts)	ref 0 263 19
•	Support plate for draw-out version	ref 4 225 95
•	Automatic auxiliary contacts (12 pin) D/O version	ref.4 222 30

9.9 Plate for transfer switches (factory assembled)

(A transfer switch plate is composed of one plate with interlock for 2 devices)

- ref 0 264 10 Plate for breaker or trip-free switch fixed version
- Plate for breaker or trip-free switch plug-in and ref. 0 264 05 draw-out version

9.10 Specific accessories for electronic version

Auxiliary power supply

For supplying electronic units

ref. 4 210 83

Is used to supply DPX3 electronic circuit breakers S2/Sg with / without earth leakage module and with / without energy metering central unit. It is mandatory in case of electronic breakers with integrated measure and not interconnected in a supervision system (MODBUS network not requested) to correctly manage the measure functions

Technical characteristics:

- Input voltage: 24V ad/dc (+/- 10%)
- Enclosure: 2 DIN modules
- Output: up to 250mA (to supply many circuit breakers according to the following table):

4 210 83	[mA]	
l _{sut} MAX = 250 mA	Electronic/Electronic + RCD (S2/Sg)	50
	Electronic/Electronic + RCD with power metering (S2/Sg)	62.5
_{but} WAX - 250 IIIA	Electronic/Electronic + RCD (S10)	70
	Electronic/Electronic + RCD with power metering (S10)	83

According to single absorptions, it can be possible to connect more than one breaker

MODBUS communication

RS485 MODBUS communication interface

ref. 4 210 75

Is used for sharing on MODBUS network all information managed by DPX3 electronic circuit breakers S2/Sg with / without earth leakage module and with / without energy metering central unit.

Technical characteristics:

- USB local PC connection
- Input voltage: 24V ad/dc (+/- 10%)
- Enclosure: 1 DIN modules
- MODBUS address configuration / transmission mode / transmission speed by physic configurators
- Output relay (220V 0,2A): to signal tripped position

Consumption: 90mA

It is possible to connect only one breaker to the interface.

In case of use of MODBUS interface 4 210 75, the external power supply module 4 210 83 is not necessary because the external power is already provided by the MODBUS module

DPX³ electronic interface - EMS CX³

For connecting electronic DPX3 S10 (250HP, 630,1600) to an EMS communication network. All the informations managed by circuit breaker's electronic card will be shared on the EMS network Dimension: 1 module

Power supply: with EMS CX³ power supply module 4 149 45 Address can be modified and set locally by DIP switches or remotely with the help of the EMS configurator software

ref. 4 238 90

Bluetooth communication key

USB key for BLE communication with electronic DPX3 S10 (250 HP, 630, 1600) to confi gure, monitor and manage it remotely through App Connection port USB on front of the circuit breaker

ref. 0 283 10

EnerUp + Project App for smartphone and tablet available on Apple Store and Google Play Configuration, monitoring and management software (PCS) available for download via e-catalogue (does not require the use of Bluetooth communication key Ref.0 283 10)

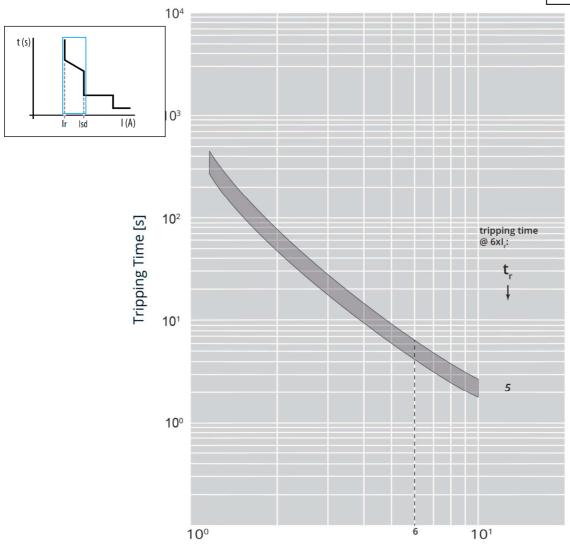
Modular power supply

230 V \pm - 27 V= - 0.6 A (2 modules)

ref. BT-E49

Touch screen

To show data collected by DX3, DPX3, DMX3, EMDX3. It can manage up to 8 devices

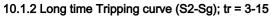

Update: 26/05/2025 Technical sheet: F01964EN/04 Creation: 06/10/2014

Reference(s): from 422 298 to 422 48 and from 422 538 to 422 584

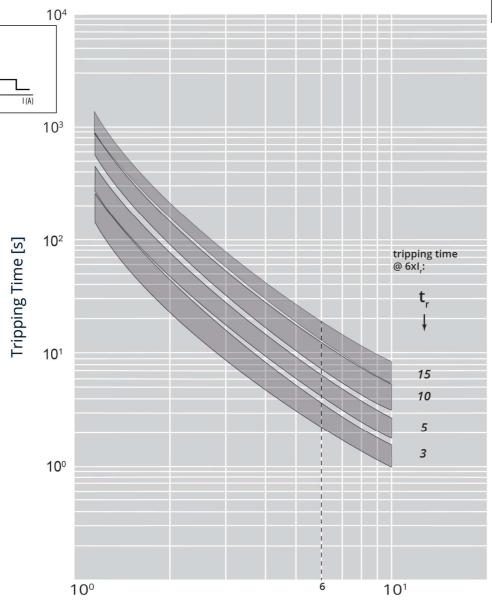
Update: 02/07/2018

10. CURVES

10.1.1 Long time Tripping curve (S1)

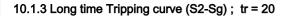


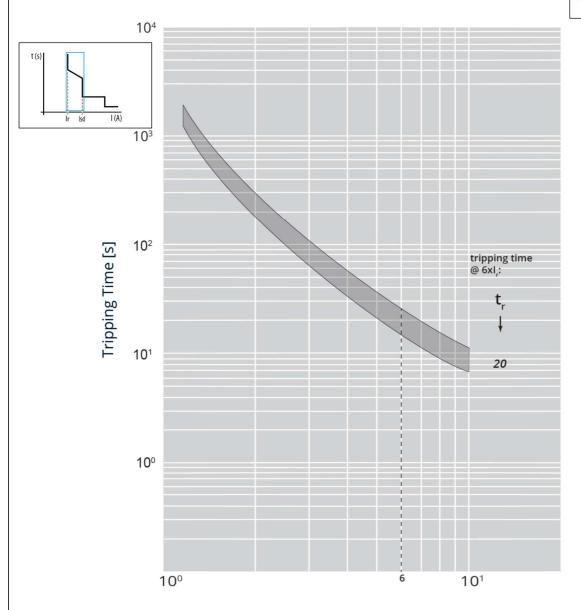
 $I_{cu} = 36-50-70-100 \text{ kA}$ $I_{max} = 1600 \text{A}$ 3-4 P $U_{e} = 415 \text{Vac}$ (IEC/EN 60947-2)


 I/I_r

Value	Description					
t	time					
I	current					
l _r	long time setting current					
t _r	long time delay					
Isd	short time setting current					
tsd	short time delay					
li	instantaneous release					
lcu	rated ultimate short-circuit breaking capacity					
I ² t = K	constant pass-through energy setting					
t = K	constant tripping time setting					
	long time trip curve					
	short time trip curve					
Current tolerance	10% up to I_{sd} ; 20% up to I_i					

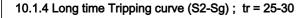
Reference(s) : from 422 298 to 422 48 and from 422 538 to 422 584

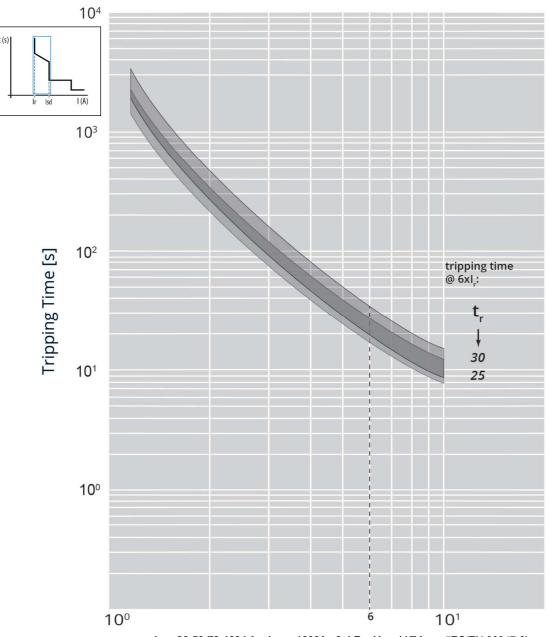

Update: 02/07/2018


 $| / |_{r}$ $|_{cu} = 36-50-70-100 \text{ kA} \quad |_{max} = 1600A \quad 3-4 \text{ P} \quad U_{e} = 415 \text{Vac} \quad (IEC/EN 60947-2)$

Value	Description
t	time
I	current
l _r	long time setting current
t _r	long time delay
Isd	short time setting current
tsd	short time delay
li	instantaneous release
Icu rated ultimate short-circuit breaking ca	
I ² t = K	constant pass-through energy setting
t = K	constant tripping time setting
	long time trip curve
	short time trip curve
Current tolerance	10% up to I_{sd} ; 20% up to I_i

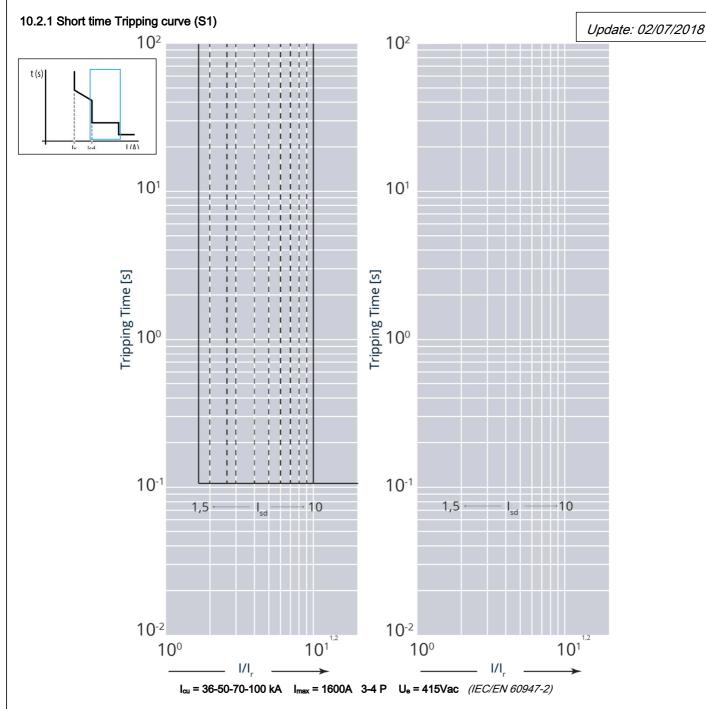
Reference(s): from 422 298 to 422 48 and from 422 538 to 422 584


Update: 02/07/2018

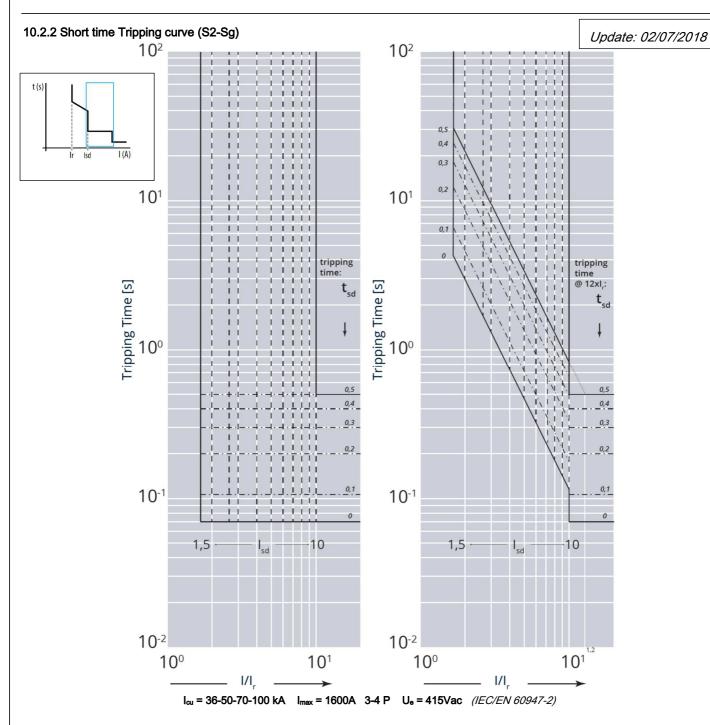

 $| / |_{r}$ $|_{cu} = 36-50-70-100 \text{ kA} \quad |_{max} = 1600A \quad 3-4 \text{ P} \quad U_{e} = 415 \text{Vac} \quad (IEC/EN 60947-2)$

Value	Description
t	time
ļ	current
l _r	long time setting current
t _r	long time delay
Isd	short time setting current
tsd	short time delay
li	instantaneous release
lcu	rated ultimate short-circuit breaking capacity
$I^2t = K$	constant pass-through energy setting
t = K	constant tripping time setting
	long time trip curve
	short time trip curve
Current tolerance	10% up to I_{sd} ; 20% up to I_i

Reference(s) : from 422 298 to 422 48 and from 422 538 to 422 584

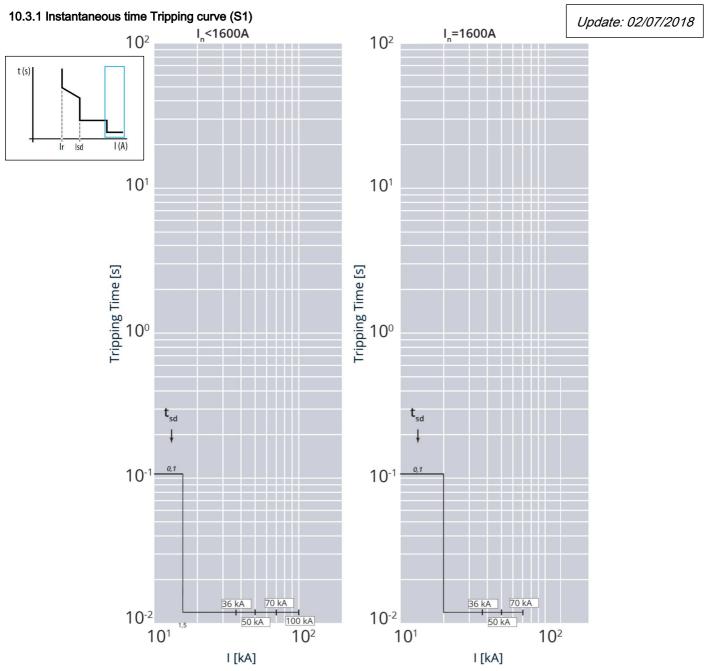


Update: 02/07/2018

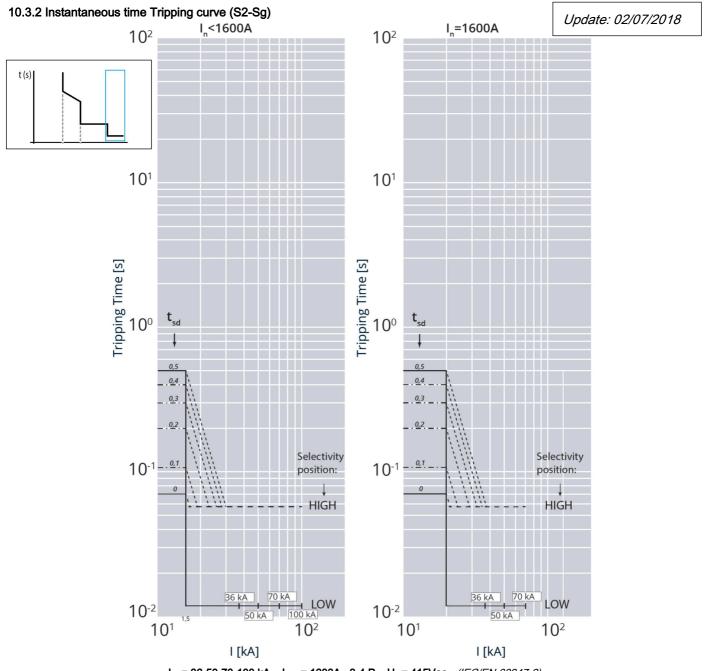


 I_{cu} = 36-50-70-100 kA I_{max} = 1600A 3-4 P U_{e} = 415Vac (IEC/EN 60947-2)

Value	Description				
t	time				
I	current				
l _r	long time setting current				
t _r	long time delay				
Isd	short time setting current				
tsd	short time delay				
li	instantaneous release				
Icu	rated ultimate short-circuit breaking capacity				
$I^2t = K$	constant pass-through energy setting				
t = K	constant tripping time setting				
	long time trip curve				
	short time trip curve				
Current tolerance	10% up to I_{sd} ; 20% up to I_i				

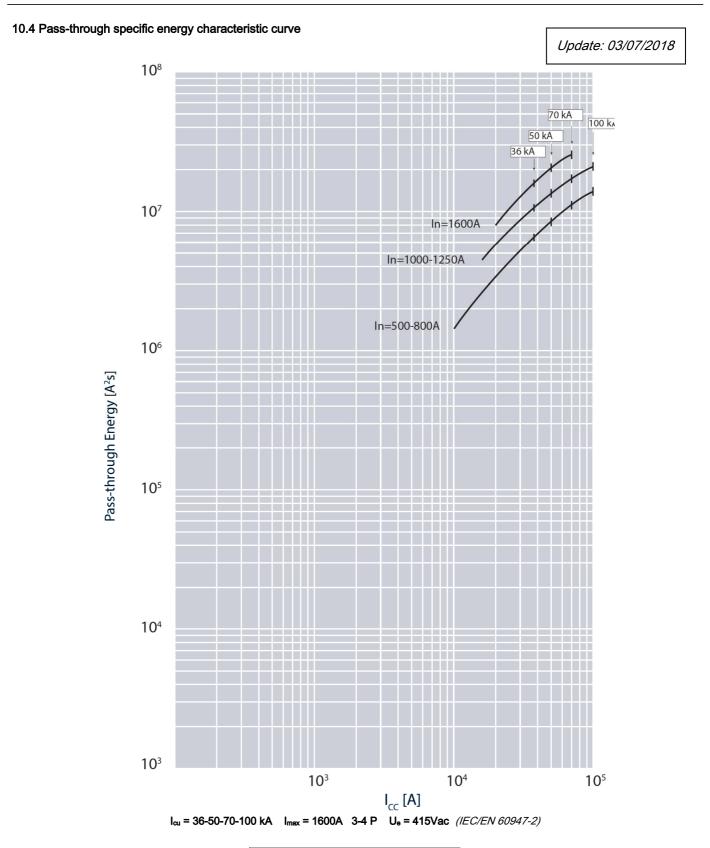

Value	Description
t	time
I	current
l _r	long time setting current
t _r	long time delay
Isd	short time setting current
tsd	short time delay
li	instantaneous release
Icu	rated ultimate short-circuit breaking capacity
$I^2t = K$	constant pass-through energy setting
t = K	constant tripping time setting
	long time trip curve
	short time trip curve
Current tolerance	10% up to I _{sd} ; 20% up to I _i

Value	Description
t	time
I	current
l _r	long time setting current
t _r	long time delay
Isd	short time setting current
tsd	short time delay
li	instantaneous release
Icu rated ultimate short-circuit breaking capac	
I ² t = K	constant pass-through energy setting
t = K	constant tripping time setting
	long time trip curve
	short time trip curve
Current tolerance	10% up to I_{sd} ; 20% up to I_i


DPX3 1600 electronic circuit breakers

Reference(s) : from 422 298 to 422 48 and from 422 538 to 422 584

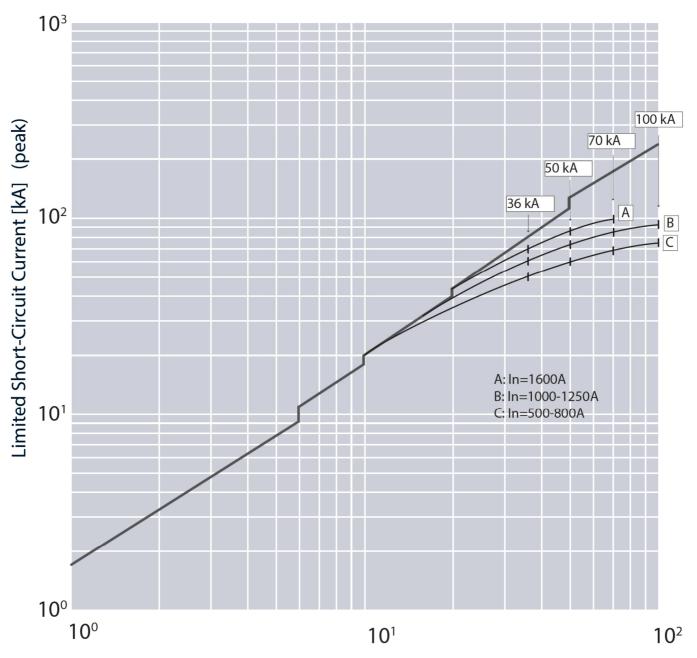
 I_{cu} = 36-50-70-100 kA I_{max} = 1600A 3-4 P U_{e} = 415Vac (/EC/EN 60947-2) Fixed Instantaneous override I_{sf} = 15kA (for I_{n} < 1600A) and I_{sf} = 20kA (for I_{n} =1600A)


Value	Description
t	time
I	current
lr	long time setting current
t _r	long time delay
Isd	short time setting current
tsd	short time delay
li	instantaneous release
Icu	rated ultimate short-circuit breaking capacity
$I^2t = K$	constant pass-through energy setting
t = K	constant tripping time setting
	long time trip curve
	short time trip curve

 I_{cu} = 36-50-70-100 kA I_{max} = 1600A 3-4 P U_{e} = 415Vac (/EC/EN 60947-2) Fixed Instantaneous override I_{sf} = 15kA (for I_{n} < 1600A) and I_{sf} = 20kA (for I_{n} = 1600A)

Value	Description						
t	time						
I	current						
l _r	long time setting current						
t _r	long time delay						
Isd	short time setting current						
tsd	short time delay						
li	instantaneous release						
lcu	rated ultimate short-circuit breaking capacity						
$I^2t = K$	constant pass-through energy setting						
t = K	constant tripping time setting						
	long time trip curve						
	short time trip curve						
Current tolerance	10% up to I _{sd} ; 20% up to I _i						

Reference(s): from 422 298 to 422 48 and from 422 538 to 422 584



	Value	Description						
I _{cc} short circuit current								
	I ² t (A ² s)	pass-through specific energy						

Reference(s) : from 422 298 to 422 48 and from 422 538 to 422 584

Update: 02/07/2018

Prospective Fault Current [kA] (RMS)

 $I_{cu} = 36-50-70-100 \text{ kA}$ $I_{max} = 1600 \text{A}$ 3-4 P $U_e = 415 \text{Vac}$ (IEC/EN 60947-2)

Value	Description						
I _{cc}	estimated short circuit symmetrical current (RMS value)						
I _p	I _p maximum short circuit peak current						
maximum prospective short circuit peak current							
	corresponding at the power factor						
maximum real peak short circuit current							

Reference(s): from 422 298 to 422 48 and from 422 538 to 422 584

A) Derating Temperature and configurations

	Ambient temperature									
	30 °C		40 °C		50 °C		60 °C		70 °C	
Fixed version	I _{max} (A)	I_r / I_n	I _{max} (A)	I_r/I_n	I _{max} (A)	I_r/I_n	I _{max} (A)	I_r/I_n	I _{max} (A)	I_r/I_n
Spreaders, flexible cable	1600	1	1600	1	1600	1	1360	0.85	1200	0.75
Spreaders, rigid cable	1600	1	1600	1	1600	1	1360	0.85	1200	0.75
Spreaders, bars 2x50x10 Cu	1600	1	1600	1	1600	1	1520	0.95	1360	0.85
Rear flat terminals, bars 4x50x5 Cu, horizontal	1600	1	1600	1	1600	1	1600	1	1440	0.9
Rear flat staggered terminals, bars 4x50x5 Cu, horizontal	1600	1	1600	1	1600	1	1600	1	1440	0.9
Draw-out version	I _{max} (A)	I_r / I_n	I _{max} (A)	I_r / I_n	I _{max} (A)	I_r/I_n	I _{max} (A)	I_r/I_n	I _{max} (A)	I_r / I_n
Spreaders, flexible cable	1600	1	1600	1	1600	1	1280	0.8	1120	0.7
Spreaders, rigid cable	1600	1	1600	1	1600	1	1280	0.8	1120	0.7
Spreaders, bars 2x50x10 Cu	1440	0.9	1440	0.9	1440	0.9	1120	0.7	960	0.6
Rear flat terminals, bars 2x100x5 Cu, vertical	1440	0.9	1440	0.9	1440	0.9	1120	0.7	960	0.6
Rear flat staggered terminals, bars 2x100x5 Cu, vertical	1440	0.9	1440	0.9	1440	0.9	1120	0.7	960	0.6
Rear flat terminals, bars 4x50x5 Cu, horizontal	1600	1	1600	1	1600	1	1440	0.9	1120	0.7
Rear flat staggered terminals, bars 4x50x5 Cu, horizontal		1	1600	1	1600	1	1440	0.9	1120	0.7

For further technical information, please contact Legrand technical support.

Data indicated in this document refers exclusively to test conditions according to product standards, unless otherwise indicated in the documentation.

For the different conditions of use of the product, inside electrical equipment or in any case inserted in the installation context, refer to the regulatory requirements of the equipment, local regulations and design specifications of the system