

1. USE

DPX ${ }^{3}$ platform, for premium segment, is able to cover extended ranges in terms of breaking capacities and rated currents, make protection suitable for different levels of power involved in installations.

DPX ${ }^{3}$ platform provide easy assembly procedures during the phase of installation and mounting of accessories, suitable for professional use.

2. RANGE

Circuit breaker

	S1		S2		S2 + measure		Sg		Sg + measure	
	36kA									
$\mathrm{In}_{\mathrm{n}}(\mathrm{A})$	3 P	4P	3 P	4P	3P	4P	3P	4P	3 P	4P
500	422538	422544	422298	422304	422346	422352	422394	422400	422442	422448
630	422539	422545	422299	422305	422347	422353	422395	422401	422443	422449
800	422540	422546	422300	422306	422348	422354	422396	422402	422444	422450
1000	422541	422547	422301	422307	422349	422355	422397	422403	422445	422451
1250	422542	422548	422302	422308	422350	422356	422398	422404	422446	422452
1600	422543	422549	422303	422309	422351	422357	422399	422405	422447	422453
	50kA		50kA		50kA		50kA		50	
$\mathrm{In}_{\mathrm{n}}(\mathrm{A})$	3 P	4P	3P	4P	3 P	4P	3P	4P	3 P	4P
500	422550	422556	422310	422316	422358	422364	422406	422412	422454	422460
630	422551	422557	422311	422317	422359	422365	422407	422413	422455	422461
800	422552	422558	422312	422318	422360	422366	422408	422414	422456	422462
1000	422553	422559	422313	422319	422361	422367	422409	422415	422457	422463
1250	422554	422560	422314	422320	422362	422368	422410	422416	422458	422464
1600	422555	422561	422315	422321	422363	422369	422411	422417	422459	422465
	70kA									
$\mathrm{In}_{\mathrm{n}}(\mathrm{A})$	3P	4P	3P	4P	3P	4P	$3 P$	4P	$3 P$	4P
500	422562	422568	422322	422328	422370	422376	422418	422424	422466	422472
630	22563	22569	422323	2232	42237	2237	2241	422425	2246	422473
800	422564	422570	422324	422330	422372	422378	422420	422426	422468	422474
1000	422565	422571	422325	422331	422373	422379	422421	422427	422469	422475
1250	422566	422572	422326	422332	422374	422380	422422	422428	422470	422476
1600	422567	422573	422327	422333	422375	422381	422423	42242	2471	422477
	100kA									
$\mathrm{In}_{\mathrm{n}}(\mathrm{A})$	3P	4P	3 P	4P	3 P	4 P	3 P	4P	3 P	4P
500	422574	422580	422334	422340	422382	422388	422430	422436	422478	422484
630	422575	422581	422335	422341	422383	422389	422431	422437	422479	422485
800	422576	422582	422336	422342	422384	422390	422432	422438	422480	422486
1000	422577	422583	422337	422343	422385	422391	422433	422439	422481	422487
1250	422578	422584	422338	422344	422386	422392	422434	422440	422482	422488

3. DIMENSIONS AND WEIGHTS

3.1 Dimensions

Implantation

Side view, flat rear terminals

Draw-out version, rear terminals

3.2 Weights

	Weights (Kg)			
Configuration	3P		$\mathbf{4 P}$	
	$\mathbf{I}_{\mathrm{n}} \leq \mathbf{1 2 5 0 A}$	$\mathbf{I}_{\mathrm{n}}=1600 \mathrm{~A}$	$\mathbf{I}_{\mathrm{n}} \leq 1250 \mathrm{~A}$	$\mathbf{I}_{\mathrm{n}}=\mathbf{1 6 0 0 A}$
Circuit breaker (fixed version)	16	17	20	21.5
Draw-out base (with front terminals)*	18	18	22	22
Draw-out base (with rear terminals)*	21.7	21.7	26.2	26.2
Draw-out debro-lift mechanism *	9.9	9.9	11.2	11.2
* to add to fixed version				

4. OVERVIEW

4.1 Supplied with:

- fixing screws (4 for 3P and 4P)
- \quad screws for connections (6 for 3P and 8 for 4P)
- phase insulators (2 for 3P and 3 for 4 P)

5. ELECTRICAL CONNECTIONS

5.1 Mounting possibilities

On plate:

- Vertical
- Horizontal
- Supply invertor type

5.2 Mounting

(see instruction sheet for detailed mounting procedures)

Busbars/cable lugs:

Cables:

Flexible Conductors		$\begin{aligned} & 2 \times 95 \mathrm{~mm}^{2} \\ & 4 \times 95 \mathrm{~mm}^{2} \end{aligned}$	MIN	$\begin{aligned} & 2 \times 185 \mathrm{~mm}^{2} \\ & 4 \times 185 \mathrm{~mm}^{2} \end{aligned}$	MAX
Rigid Conductors	6	$\begin{aligned} & \hline 2 \times 120 \mathrm{~mm}^{2} \\ & 4 \times 120 \mathrm{~mm}^{2} \end{aligned}$	MIN	$\begin{aligned} & 2 \times 240 \mathrm{~mm}^{2} \\ & 4 \times 240 \mathrm{~mm}^{2} \end{aligned}$	MAX

6. ELECTRICAL AND MECHANICAL CHARACTERISTICS

Circuit Breaker	DPX ${ }^{3} 1600$ TM F/N/H/L (36kA, 50kA, 70kA, 100kA)
Rated current (A)	500, 630, 800, 1000, 1250, 1600
Poles	3-4
Pole pitch (mm)	70
Rated insulation voltage ($50 / 60 \mathrm{~Hz}$) $\mathrm{U}_{1}(\mathrm{~V})$	1000
Rated operating voltage ($50 / 60 \mathrm{~Hz}$) $\mathrm{U}_{0}(\mathrm{~V})$	690
Rated impulse withstand current $\mathrm{U}_{\mathrm{imp}}$	8
Rated frequency (Hz)	50-60
Operating temperature (${ }^{\circ} \mathrm{C}$)	$-25 \div 70$
Mechanical endurance (cycles)	10000
Mechanical endurance with motor control	5000
Electrical endurance at I_{n} (cycles)	4000
Electrical endurance at $0.5 \mathrm{I}_{\mathrm{n}}$ (cycles)	8000
Utilization category	B
Suitable for isolation	Yes
Type of protection	Electronic
Thermal type protection	Adjustable
Thermal adjustment $\mathrm{I}_{\mathrm{r}}\left[\mathrm{x} \mathrm{I}_{\mathrm{n}}\right]$	0,4 $\div 1$
Thermal adjustment t_{r} [s]	3-5-10-15-20-25-30
Thermal time tripping at $2 x$ In (single pole) [s]	$33 \mathrm{~s} \pm 20 \%$ if tr = 3s@12Ir
Magnetic type protection	Adjustable
Magnetic adjustment $I_{\text {sd }}$ [$\times \mathrm{I}_{\mathrm{r}}$]	$1.5 \div 10$
Time adjustement $\mathrm{t}_{\text {sd }}\left(\mathrm{t}=\mathrm{k} \circ \mathrm{I}^{\mathbf{2}} \mathrm{t}=\mathrm{k}\right.$) [s]	0-0.1-0.2-0.3-0.4-0.5
Minimum release single pole	1.2 lsd
Istantaneous electronic adjustment I_{i}	$\begin{aligned} & 15 \mathrm{kA}(\ln <=1250 \mathrm{~A}) ; \\ & 20 \mathrm{kA}(\ln =1600 \mathrm{~A}) \\ & \hline \end{aligned}$
Neutral protection for 4P (\%I I_{th} of phase pole)	100
Dimensions (W×HxD) (mm)	210(3P)/280 (4P) $\times 320 \times 140$

6.1 Breaking capacity (kA)

		Breaking capacity (kA) \& I $\mathrm{Ics}^{\text {c }}$			
		3P-4P			
IEC 60947-2	$\mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{cu}}$ ($\mathrm{I}_{\text {cu }}$ letter)	36kA (F)	50kA (N)	70kA (H)	100kA (L)
	220/240 V AC	70	100	105	150
	380/415 V AC	36	50	70	100
	440/460 V AC	30	45	65	80
	480/500 V AC	25	35	45	55
	480/550 V AC	20	24	28	30
	600 V AC	20	24	28	30
	690V AC	14	20	22	25
	$\mathrm{I}_{\mathrm{cs}}\left(\% \mathrm{I}_{\mathrm{cu}}\right.$)	100	100	100	70
	Rated making capacity under short circuit I_{cm}				
	$\mathrm{lcm}^{\text {(} \mathrm{kA}}$) at 415V	76.5	105	154	220
NEMA AB-1	220/240 V AC	70	100	105	150
	480/500 V AC	25	35	45	55
	690 V AC	14	20	22	25

6.3 Rated current $\left(\mathrm{In}_{\mathrm{n}}\right)$ at $40^{\circ} \mathrm{C} / 50^{\circ} \mathrm{C}$

	Phases limit trip current			
	thermal ($\left.\mathbf{I}_{\mathbf{r}}\right)$		magnetic ($\left.\mathbf{I}_{\mathbf{i}}\right)$	
$\mathbf{I}_{\mathbf{n}}(A)$	$\mathbf{0 . 4 \times \mathbf { I } _ { \mathbf { n } }}$	$\mathbf{1 \times \mathbf { I } _ { \mathbf { n } }}$	$\mathbf{1 . 5 \times \mathbf { I } _ { \mathbf { r } }}$	$\mathbf{1 0 \times \mathbf { I } _ { \mathbf { r } }}$
500	200	500	750	5000
630	252	630	945	6300
800	320	800	1200	8000
1000	400	1000	1500	10000
1250	500	1250	1875	12500
1600	640	1600	2400	16000

* For neutral adjustment, as explained in technical sheet, please consider the values ratios 100% on set currents.

6.3 Load operations

Force on handle	In $\mathbf{\leq 4 0 0 A}$	In $\geq \mathbf{5 0 0 A}$
Opening operation (N)	80	130
Closing operation (N)	180	210
Restore operation (N)	145	200

6.4 Electrodynamic forces

The table below shows an indication of suggested distances to keep between the breaker and the first fixing point of the conductor and bars in order to reduce the effects of the electrodynamic stresses that may be created during a short circuit. In the realization of anchorage system it is recommend the use of isolators suitable for the type of conductor used and the operating voltage.

$\mathbf{I}_{\text {cc }}(\mathbf{k A})$	Maximum Distance (mm)
36	350
50	300
70	250
100	200

According to conductor type and bar system (except Legrand bar kits), the choice of the distance to keep is to be calibrated by the installer.

Also installer must take into account the weight of the conductors so that this does not affect the electrical junction between the conductor itself and the connection point.

6.5 Power losses per pole under In_{n}

	Power losses per pole (W)						
	$\mathbf{5 0 0}$	$\mathbf{6 3 0}$	$\mathbf{8 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{1 2 5 0}$	$\mathbf{1 6 0 0}$	
Front terminals - Fixed version	11.6	18.5	29.8	47.6	74.4	65.3	
Rear terminals - Fixed version	11.5	18.3	29.4	47.0	73.4	58.9	
Front terminals - D-O version	20.0	31.8	51.2	82.0	128.1	112.6	
Rear terminals - D-O version	15.0	23.8	38.4	60.0	93.8	97.3	

Note: power loss in the table above are referred and measured as described in the standard IEC 60947-2 (Annex G) for circuit-breakers. Values in the table are referred to a single phase.

6.6 DERATINGS

6.6.1 Temperature

Rated current and his adjustment has to be considered relating to a rise or fall of ambient temperature and to a different version or installation conditions. The table below indicates the maximum long-time (LT) protection setting depending on the ambient temperature.

	Temperature $\mathbf{T}_{\mathbf{a}}\left({ }^{\circ} \mathbf{C}\right)$							
$\mathbf{I}_{\mathbf{n}} \mathbf{(A)}$	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 0}$	$\mathbf{7 0}$	
$\mathbf{5 0 0}$	500	500	500	500	500	500	500	
$\mathbf{6 3 0}$	630	630	630	630	630	630	630	
$\mathbf{8 0 0}$	800	800	800	800	800	800	720	
$\mathbf{1 0 0 0}$	1000	1000	1000	1000	1000	1000	900	
$\mathbf{1 2 5 0}$	1250	1250	1250	1250	1250	1250	938	
$\mathbf{1 6 0 0}$	1600	1600	1600	1600	1600	1600	1360	

For derating temperature with other configurations, see table A.

6.6.2 Specific condition use

Climatic conditions
according to IEC/EN 60947-1 Annex Q, Cat. F subject to temperature, humidity, vibration, shock and salt mist.

Electromagnetic disturbances (EMC)

for DPX 31600 circuit breakers, according to IEC/EN 60947-2 Annex F

Pollution degree

for DPX ${ }^{3} 1600$ circuit breakers, degree 3, according to IEC/EN 60947-2

6.6.3 Altitude

Altitude derating for DPX^{3} a

Altitude (m)	$\mathbf{2 0 0 0}$	$\mathbf{3 0 0 0}$	$\mathbf{4 0 0 0}$	$\mathbf{5 0 0 0}$
$\mathrm{U}_{\mathrm{e}}(\mathrm{V})$	690	590	520	460
$\mathrm{I}_{\mathrm{n}}(\mathrm{A})\left(\mathrm{T}_{\mathrm{a}}=40^{\circ} \mathrm{C} / 50^{\circ} \mathrm{C}\right)$	$1 \times \mathrm{I}_{\mathrm{n}}$	$0.98 \times \mathrm{I}_{\mathrm{n}}$	$0.93 \times \mathrm{I}_{\mathrm{n}}$	$0.9 \times \mathrm{I}_{\mathrm{n}}$

7. ELECTRONIC PROTECTION UNIT

7.1 Version S1 - Adjustment of I_{r}, I_{sd}

Long delay protection against overloads with an adjustable threshold bases on the RMS value of the current:

- $\mathrm{I}_{\mathrm{r}}=0.4 \div 1 \mathrm{I}_{\mathrm{n}}$ (steps 1 A)

Short delay protection against short-circuits with an adjustable $I_{\text {sd }}$ threshold:

- $\quad \mathrm{I}_{\mathrm{sd}}=1.5-2-2.5-3-4-5-6-7-8-9-10 \times \operatorname{lr}(11$ steps $)$

Instantaneous protection with fixed threshold:

- $\quad 500 \mathrm{~A} \mathrm{I}_{\mathrm{i}}=15 \mathrm{kA}$,
- $630,800 \mathrm{~A} \mathrm{I}_{\mathrm{i}}=15 \mathrm{kA}$,
- $1000 \mathrm{~A} \mathrm{l}_{\mathrm{i}}=15 \mathrm{kA}$,
- $1250 \mathrm{~A} \mathrm{I}_{\mathrm{i}}=15 \mathrm{kA}$,
- $\quad 1600 \mathrm{~A} \mathrm{I}_{\mathrm{i}}=20 \mathrm{kA}$
7.2 Version S 2 - Adjustment of $\mathrm{I}_{\mathrm{r}}, \mathrm{T}_{\mathrm{r}}, \mathrm{I}_{\mathrm{sd}}, \mathrm{T}_{\mathrm{sd}}$

LCD display with adjustment buttons, battery case and USB port.

I(A)
Long delay protection against overloads with an adjustable threshold bases on the RMS value of the current:

- $\mathrm{I}_{\mathrm{r}}=0.4 \div 1 \mathrm{I}_{\mathrm{n}}($ steps 1 A$)$
- $\mathrm{T}_{\mathrm{r}}=3-30 \mathrm{~s}(3-5-10-15-20-25-30)$ (7 steps)

Short delay protection against short-circuits with an adjustable $\mathrm{I}_{\text {sd }}$ threshold:

- $\quad \mathrm{I}_{\mathrm{sd}}=1.5-2-2.5-3-4-5-6-7-8-9-10 \times \mathrm{I}_{\mathrm{r}}$ (11 steps)
- $\quad \mathrm{T}_{\mathrm{sd}}=0-100-200-300-400-500 \mathrm{~ms}(\mathrm{I}=\mathrm{K})$
- $\quad \mathrm{T}_{\mathrm{sd}}=0-100-200-300-400-500 \mathrm{~ms}(12 \mathrm{t}=\mathrm{K})$

Instantaneous protection with fixed threshold:

- $500 \mathrm{~A} \mathrm{I}_{\mathrm{i}}=15 \mathrm{kA}$,
- $630,800 \mathrm{~A} \mathrm{I}_{\mathrm{i}}=15 \mathrm{kA}$,
- $1000 \mathrm{~A} \mathrm{I}_{\mathrm{i}}=15 \mathrm{kA}$,
- $1250 \mathrm{~A} \mathrm{I}_{\mathrm{i}}=15 \mathrm{kA}$,
- $\quad 1600 A \mathrm{l}_{\mathrm{i}}=20 \mathrm{kA}$
7.3 Version Sg - Adjustment of $\mathrm{I}_{\mathrm{r}}, \mathrm{T}_{\mathrm{r}}, \mathrm{Isd}_{\mathrm{sd}}, \mathrm{T}_{\mathrm{sd}}, \mathrm{I}_{\mathrm{g}}, \mathrm{T}_{\mathrm{g}}$

LCD display with adjustment buttons, battery case and USB port.

Long delay protection against overloads with an adjustable threshold bases on the RMS value of the current:

- $\mathrm{I}_{\mathrm{r}}=0.4 \div 1 \mathrm{I}_{\mathrm{n}}($ steps 1 A$)$
- $\mathrm{T}_{\mathrm{r}}=3-30 \mathrm{~s}(3-5-10-15-20-25-30)$ (7 steps)

Short delay protection against short-circuits with an adjustable $\mathrm{I}_{\text {sd }}$ threshold :

- $\quad \mathrm{I}_{\mathrm{sd}}=1.5-2-2.5-3-4-5-6-7-8-9-10 \times \mathrm{I}_{\mathrm{r}}$ (11 steps)
- $\mathrm{T}_{\mathrm{sd}}=0-100-200-300-400-500 \mathrm{~ms}(\mathrm{I}=\mathrm{K})$
- $\quad \mathrm{T}_{\mathrm{sd}}=0-100-200-300-400-500 \mathrm{~ms}(12 \mathrm{t}=\mathrm{K})$

Instantaneous protection with fixed threshold:

- $500 \mathrm{~A} \mathrm{I}_{\mathrm{i}}=15 \mathrm{kA}$,
- $630,800 \mathrm{~A} \mathrm{I}_{\mathrm{i}}=15 \mathrm{kA}$,
- $1000 A I_{i}=15 k A$,
- $1250 \mathrm{~A} \mathrm{I}_{\mathrm{i}}=15 \mathrm{kA}$,
- $\quad 1600 \mathrm{~A} \mathrm{l}_{\mathrm{i}}=20 \mathrm{kA}$

Measure of ground fault:

- $\mathrm{I}_{\mathrm{g}}: 0.2-0.3-0.4-0.5-0.6-0.7-0.8-0.9-1 \mathrm{x} \mathrm{I}_{\mathrm{n}}$ (9 steps)
and OFF
- $\mathrm{T}_{\mathrm{g}}: 0.1-0.2-0.3-0.4-0.5-1 \mathrm{~s}$

Together with above protections, activated in case of electric faults, the trip unit also integrates self-protection for:

- Over temperature : in case the internal temperature of protection unit exceed $95^{\circ} \mathrm{C}$;
- Auto diagnostics: in case embedded watchdog circuit detects internal malfunctions, which could compromise the correct working of microcontroller.

General remarks on protection unit

The protection units $\mathrm{S} 1 / \mathrm{S} 2 / \mathrm{Sg}$ are normally supplied by the internal current transformers (CTs).

When the current flowing through the circuit breaker is greater than 12% of the maximum power (20% of In for single phase load), the internal current supply ensures all operation of the protection unit, included LED status, display indications(*) and diagnostic functions (e.g. trip test).
(*)Display backlight and integrated measure (if available) are instead guaranteed starting from 20% of the maximum power (35% of \ln for single phase load), in absence of any other supply. In any case the external power supply is strongly recommended for the correct working of measurement, as well as RS485 communication.

To ensure the same performance when the load is less than 12% of the maximum power (20\% of In for single phase load) to grant complete functions, one of the following optional power supplies can be used:

- (*)external Auxiliary power supplier or, alternatively, Modbus communication interface.
- (*)power supply temporarily connected to frontal USB socket, connected to a 5V DC power bank or PC.
- (**) power supply temporarily connected to frontal Service port, connected to specific adapter for PC (Legrand use only)

(*) available only for S2/Sg versions

(**) available only for S1 versions

In the electronic unit protection type S2/Sg, an energy metering central unit, if available, is integrated.
The possible parameters that can be measured are listed in the following table:

Measured	UNIT	DESCRIPTION
I_{1}	A	L1 realtime measured value
I_{2}	A	L2 realtime measured value
I_{3}	A	L3 realtime measured value
$\mathrm{I}_{\mathrm{N}}(4 \mathrm{P})$	A	N realtime measured value
I_{G}	A	G realtime measured value
$\mathrm{U}_{12} \mathrm{U}_{23} \mathrm{U}_{31}$ (3P)	V	Phase to Phase Voltage
$\mathrm{V}_{12} \mathrm{~V}_{23} \mathrm{~V}_{31}(4 \mathrm{P})$	V	Voltage
Freq.	Hz	Frequency
$\mathrm{P}_{\text {Tot }}$	kW	Active Power
$Q_{\text {Tot }}$	kvar	Reactive Power
PF		Power Factor
$\mathrm{E}_{\mathrm{p}} \downarrow$	kWh	Consumed active energy
$\mathrm{E}_{\mathrm{p}} \uparrow$	kWh	Returned active energy
$\mathrm{E}_{\mathrm{q}} \downarrow$	kvar h	Consumed reactive energy
$\mathrm{E}_{\mathrm{q}} \uparrow$	Kvar h	Returned reactive energy
$\mathrm{THDU}_{12} / \mathrm{THDU}_{23} / \mathrm{THDU}_{31}$ (3P)	\%	Chained Voltage THD
$\mathrm{THDV}_{1 \mathrm{~N}} / \mathrm{THDV}_{2 N} / \mathrm{THDV}_{3 N}(4 \mathrm{P})$	\%	Voltage THD
$\mathrm{THDI}_{1} / \mathrm{THDI}_{2} / \mathrm{THDI}_{3} / \mathrm{THDI}_{\mathrm{N}}$	\%	Current THD
MEM	A $-{ }^{\circ} \mathrm{C}$	Cause of the last intervention and its value

Function performance class according to IEC 61557-12

	Performance	Measurement range					Other complementary characteristics				
		DPX ${ }^{3} 1600 \mathrm{~A}$					$\mathrm{I}_{\text {mx }} \mathrm{PMD}$				
I_{n}		630A	800A	1000 A	1250A	1600A	630A	800A	1000 A	1250A	1600A
P	1	0.5kW	0.5kW	0.5kW	0.5kW	0.5kW	750A	960 A	1200 A	1500 A	1920A
		900kW	1.15MW	1.4MW	1.8MW	2.3MW	$\mathrm{I}_{6}=40 \mathrm{OA}, \mathrm{U}_{n}=400 \mathrm{~V}, \mathrm{f}_{n}=5 \mathrm{~Hz}$				
QA, Q ${ }_{v}$	2	0.5kvar	0.5kvar	0.5kvar	0.5kar	0.5kvar	750A	960 A	1200 A	1500 A	1920A
		900kW	1.15MW	1.4MW	1.8MW	2.3MW	$\mathrm{I}_{6}=250 \mathrm{~A}, \mathrm{U}_{n}=400 \mathrm{~V}, \mathrm{f}_{n}=5 \mathrm{OHz}$				
$\mathrm{E}_{\text {a }}$	1	0...999 GW/h					750A	960A	1200 A	1500 A	1920A
							$\mathrm{l}_{6}=400 \mathrm{~A}, \mathrm{U}_{n}=400 \mathrm{O}, \mathrm{f}_{n}=5 \mathrm{OHz}$				
ERA, $\mathrm{E}_{\text {r }}$	2	0...999 GW/h					750A	960A	1200 A	1500 A	1920A
							$\mathrm{I}_{6}=400 \mathrm{~A}, \mathrm{U}_{n}=400 \mathrm{O}, \mathrm{f}_{n}=5 \mathrm{OHz}$				
f	0.02	50..60 Hz					-				
1	1	20A	20A	20A	20A	20A	750A	960A	1200 A	1500 A	1920A
		750A	950A	1200 A	1500A	1950A	$\mathrm{l}_{\mathrm{b}}=000 \mathrm{~A}, \mathrm{U}_{n}=400 \mathrm{~V}, \mathrm{f}_{\mathrm{n}}=50 \mathrm{~Hz}$				
I_{N}	1	20A	20A	20A	20A	20A	750A	960 A	1200 A	1500 A	1920A
		750A	950A	1200A	1500 A	1950A	$\mathrm{I}_{6}=400 \mathrm{~A}, \mathrm{U}_{n}=400 \mathrm{O}, \mathrm{f}_{n}=5 \mathrm{OHz}$				
U	0.5	88...690V									
$\mathrm{P}_{\text {FA }}$	0.5	-					750A	960A	1200 A	1500 A	1920A
							$\mathrm{l}_{6}=40 \mathrm{OA}, \mathrm{U}_{n}=400 \mathrm{O}, \mathrm{f}_{n}=5 \mathrm{~Hz}$				
THDu	5	110...690V									
THD ${ }_{1}$	5	400A	400A	400A	400A	400A					
		630A	800 A	1000 A	1250A	1600 A					

8．CONFORMITY

DPX ${ }^{3}$ range of product concerning circuit－breakers exceed compliance with the EN／IEC standard 60947－2 and 60947－3 respectively．

Certification available by IECEE CB－scheme or LOVAG Compliance scheme．
Marks as CCC（China），EAC（Eurasian Federation）or different local certification are available．
DMX ${ }^{3}$ are in conformity with the Lloyds Shipping Register，RINA and Bureau Veritas Marine．

DMX ${ }^{3}$ respect the European Directives REACh，RoHS，RAEE and Product Environment Product（PEP Ecopassport）are available．

For specific information，please contact Legrand support．

8．1 Marking

Product（borh circuit breakers anc switch disconnectors）are provided with labelling in full conformity to the referred standard and directives requirements by laser or sticker labels as：

Product laser label on front
－Manufacturer responsible
－Denomination，type product，code
－Standard conformity
－Standard characteristics declared
－coloured identification of I_{cu} at 415 V

S1 release：

S2／Sg release：

Product sticker label on side

－Manufacturer responsible
－Denomination and type product
－Standard conformity
－Mark／Licence（if any）
－Directive requirements
－bar code identification product
－Manufacturing Country

Mark sticker label on side

－Product code
－Mark／Licence（if any）
－Country deviation，if any

Packaging sticker label

－Manufacturer responsible
－Denomination and type product
－Standard conformity
－Mark／Licence（if any）
－Directive requirements
－bar code identification product

9. EQUIPMENTS AND ACCESSORIES

9.1 Releases (for DPX ${ }^{3} 630$ / DPX 3 1600)

- shunt releases with voltage:

24 Vac and dc
48 Vac and dc
$110 \div 130 \mathrm{Vac}$ and dc
$220 \div 250 \mathrm{Vac}$ and dc
$380 \div 440 \mathrm{Vac}$ and dc
ref. 422239
ref. 422240
ref. 422241
ref. 422242
ref. 422243

Shunt releases electrical characteristics	
Rated voltage (U.	Both ac and dc: $24 \mathrm{~V} / \mathbf{4 8} / \mathbf{1 1 0} \div \mathbf{1 3 0 \mathrm { V } / 2 2 0 \div 2 5 0 \mathrm { V } / 3 8 0 \div 4 4 0 \mathrm { V }}$
Voltage range $\left(\% \mathrm{U}_{\mathrm{c}}\right)$	$\mathbf{7 0} \div \mathbf{1 1 0}$
Intervention time (ms)	≤ 50
Power consumption $(\mathrm{W} / \mathrm{VA})$	$\mathbf{3 0 0}$
Minimum opening time (ms)	50 ms
Insulation voltage (kV)	$\mathbf{2 , 5}$

- undervoltage releases with voltage

24 V dc
ref. 422244
24 V ac
48 V dc
110-125 V ac
220-240 V ac
380-415 V ac
ref. 422246
ref. 422247
ref. 422248
ref. 422249

Undervoltage relases electrical characteristics	
Rated voltage (U_{c})	ac: $24 \mathrm{~V} / 110 \div 125 \mathrm{~V} / 220 \div 240 \mathrm{~V} / 380 \div 415 \mathrm{~V}$ dc: $24 \mathrm{~V} / 48 \mathrm{~V}$
Voltage range (\%U.)	$85 \div 110$
Minimum opening time (ms)	50
Power consumption (W/VA)	$1.6 / 5$

- time-lag undervoltage releases $(800 \mathrm{~ms})$

Time-lag modules with voltage:
230 V ac
ref. 026190
400 V ac
ref. 026191

Universal Release
ref. 422623
(to be equipped with a time-lag module 0261 90/91)

9.2 Auxiliary contacts (for DPX ${ }^{3} 630$ / DPX ${ }^{3} 1600$)

Changeover switch $3 \mathrm{~A}-250$ VAC
ref. 421011
To show the state of the contacts or opening of the $\mathrm{DPX}^{3} / \mathrm{DPX}^{3}-\mathrm{I}$ on a fault:
$\begin{array}{ll}\circ & \text { Auxiliary contact (standard) } \\ \text { ○ } & \text { OC } \\ \text { CTR }\end{array}$

Auxiliary contact electrica characteristics		
Rated voltage ($\mathbf{V}_{\mathbf{n}}$)	\mathbf{V} (ac or dc)	$\mathbf{2 4}$ to $\mathbf{2 5 0}$
Intensity (A)	$\mathbf{2 4 ~ V ~ d c}$	5
	$\mathbf{4 8} \mathbf{~ V ~ d c}$	1.7
	$\mathbf{1 1 0 ~ \mathbf { ~ V ~ d c }}$	0.5
	$\mathbf{2 3 0} \mathbf{~ V ~ d c}$	0.25
	$\mathbf{1 1 0 ~ V ~ a c}$	4
	$\mathbf{2 3 0 / 2 5 0 ~ V}$ ac	3

Configurations:
DPX $^{3} 1600 \rightarrow 3$ auxiliary contacts +1 fault signal +1 release

To get more information on auxiliary mounting procedures, please refer to product instruction sheet.

9.3 Universal keylocks

These keylocks must be used for all the accessories that can be locked:

- rotary handle
- motor operator
- plug-in mechanism
- draw-out mechanism

For each of these, a specific accessory (indicated in the specific section of this datasheet) must be added in order to get the complete locking kits for the specific application.

- 1 lock +1 flat key with random mapping
- 1 lock +1 flat key with fixed mapping (EL43525)
- 1 lock + 1 flat key with fixed mapping (EL43363)
- 1 lock +1 star key with random mapping
ref. 423880
ref. 423881
ref. 423882 ref. 423883

9.4 Rotary handles

Direct on DPX3 (with auxiliary option)

- Standard (black)
ref. 026261

Vari-depth handle IP55 (with auxiliary option)

- Standard (black)
ref. 026283
- For emergency use (red / yellow) adapting on standard handle

9.7 Connection accessories

Cage terminals

- Set of 4 terminals for cables $2 \times 240 \mathrm{~mm}^{2}$ max (rigid) or $2 \times 185 \mathrm{~mm}^{2}$ max (flexible) (Cu/AI)
ref. 026269
- Set of 4 terminals for cables $4 \times 240 \mathrm{~mm}^{2}$ max (rigid) or $4 \times 185 \mathrm{~mm}^{2}$ max (flexible) (Cu/AI) ref. 026270

Extended front terminals

- Short terminals for 500-1250A (2 bars max. per pole)
- Long terminals for 1600A (3 bars max. per pole) ref. 026268

Spreaders

- Set of 3 (incoming or outgoing 3P)
ref. 026273
- Set of 4 (incoming or outgoing 4P) ref. 026274

Rear terminals
(use to connect fixed version with front terminals into fixed version with rear terminal)

- Set of swivel terminals, incoming or outgoing
ref. 026380
ref. 026154

Customer assembled

Front operated

- Voltage

24 V AC and DC $\left(\mathrm{I}_{\mathrm{n}} \leq 1250 \mathrm{~A}\right)$
ref. 026124

- Voltage 48 V AC and DC $\left(\mathrm{I}_{n} \leq 1250 \mathrm{~A}\right)$
- Voltage 110 V AC and DC $\left(\mathrm{I}_{\mathrm{n}} \leq 1250 \mathrm{~A}\right)$
- Voltage 220 V AC and $D C\left(\mathrm{I}_{\mathrm{n}} \leq 1250 \mathrm{~A}\right)$

25
ref. 026126
ref. 026123
ref. 026119

- Voltage

24 V AC and $D C$ ($\left.\mathrm{I}_{\mathrm{n}}=1600 \mathrm{~A}\right)$

- Voltage 48 V AC and DC $\left(I_{n}=1600 \mathrm{~A}\right)$
- Voltage 110 V AC and DC ($\left.\left.\mathrm{In}_{\mathrm{n}}=1600 \mathrm{~A}\right)\right)$
ref 026129
ref. 026127
Locking accessories
- Key lock accessory for motor operator
ref. 422806

Ref. 422806 must be used with universal keylocks to get the complete locking kit for motor operator

9.6 Mechanical accessories

Phase insulators

- Set of 3
ref. 026266
Sealable terminal shields
- Set of 23 P
ref. 026264
- \quad Set of 24 P ref. 026265

Padlock

- Accessories to lock in open position
ref. 026260
Terminal covers to guarantee IP20
- \quad Set of $23 P$
$-\quad$ Set of $24 P$
ref. 422590
- Set of 24 P
ref. 422591
- External neutral
ref. 422592
3 P
4 P
ar terminals, incoming or outgoing

3P

"Débro-lift" mechanism

To be fitted on a DPX ${ }^{3} 1600$ fixed version in order to obtain the
movable part of a drawout circuit breaker

- Mobile part for draw-out version

$3 P$	ref. 422593
$4 P$	ref. 422594

Key lock for "Débro-lift" mechanism

- One key for DPX³ only
(enable locking in draw - out position)
- Key lock accessory for draw-out
(frontal masks for motor operator or rotary handle) ref. 422809
- Key lock accessory for draw-out
ref. 422810
Ref. 422809 and 422810 must be used with universal keylocks to get the complete locking kit for draw-out version

Accessories for "Débro-lift" mechanism

- Isolated handle for drawing-out ref 026575
- Signal contact (plugged-in / drawn-out) ref 026574
- Set of connectors (8 contacts) ref 026399
- Set of connectors (6 contacts) ref 026319
- Support plate for draw-out version ref 422595
- Automatic auxiliary contacts (12 pin) D/O version ref. 422230

Plate for transfer switches (factory assembled)

(A transfer switch plate is composed of one plate with interlock for 2 devices)

- Plate for breaker or trip-free switch fixed version ref. 026410
- Plate for breaker or trip-free switch plug-in and ref. 026405 draw-out version

9.9 Specific accessories for electronic version

Auxiliary power supply

- For supplying electronic units
ref. 421083
Is used to supply DPX ${ }^{3}$ electronic circuit breakers $\mathrm{S} 2 / \mathrm{Sg}$ with / without earth leakage module and with / without energy metering central unit. It is mandatory in case of electronic breakers with integrated measure and not interconnected in a supervision system (MODBUS network not requested) to correctly manage the measure functions

Technical characteristics:

- Input voltage: 24 V ad/dc (+/- 10\%)
- Enclosure: 2 DIN modules
- Output: up to 250 mA (to supply many circuit breakers according to the following table):

421083	DPX ${ }^{3} 250 / 630 / 1600$	[mA]
but $\mathrm{MAX}=250 \mathrm{~mA}$	Electronic (S2/Sg)	50
	Electronic with power metering ($\mathrm{S} 2 / \mathrm{Sg}$)	62.5
	Electronic with residual current protection (S2)	50
	Electronic with residual current protection and power metering (S2)	62.5

According to single absorptions, it can be possible to connect more than one breaker

MODBUS communication

- RS485 MODBUS communication interface
ref. 421075

Is used for sharing on MODBUS network all information managed by DPX^{3} electronic circuit breakers $\mathrm{S} 2 / \mathrm{Sg}$ with / without earth leakage module and with / without energy metering central unit.

Technical characteristics

- USB local PC connection
- Input voltage: 24 V ad/dc (+/- 10\%)
- Enclosure: 1 DIN modules
- MODBUS address configuration / transmission mode / transmission speed by physic configurators
- Output relay ($220 \mathrm{~V}-0,2 \mathrm{~A}$): to signal tripped position

Consumption: 90 mA
It is possible to connect only one breaker to the interface.

In case of use of MODBUS interface 4210 75, the external power supply module 421083 is not necessary because the external power is already provided by the MODBUS module

DPX ${ }^{3}$ electronic interface - EMS CX ${ }^{3}$

- For connecting electronic DPX ${ }^{3}$ S10 (250HP, 630,1600) to an EMS communication network. All the informations managed by circuit breaker's electronic card will be shared on the EMS network Dimension: 1 module
Power supply: with EMS CX³ power supply module 414945 Address can be modified and set locally by DIP switches or remotely with the help of the EMS configurator software
ref. 423890

Bluetooth communication key

USB key for BLE communication with electronic DPX ${ }^{3}$ S10 (250 HP, 630,1600) to confi gure, monitor and manage it remotely through App Connection port USB on front of the circuit breaker
ref. 028310

EnerUp + Project App for smartphone and tablet available on Apple Store and Google Play Configuration, monitoring and management software (PCS) available for download via e-catalogue (does not require the use of Bluetooth communication key Ref. 0283 10)

Modular power supply

- $230 \mathrm{~V} \pm-27 \mathrm{~V}=-0.6 \mathrm{~A}$ (2 modules)
ref. BT-E49

Touch screen

- To show data collected by $\mathrm{DX}^{3}, \mathrm{DPX}^{3}, \mathrm{DMX}^{3}, \mathrm{EMDX}^{3}$. It can manage up to 8 devices
ref. 026156

10. CURVES

10.1.1 Long time Tripping curve (S1)

Update: 02/07/2018

Value	Description
t	time
I	current
I_{r}	long time setting current
t_{r}	long time delay
Isd	short time setting current
tsd	short time delay
Ii	instantaneous release
Icu	rated ultimate short-circuit breaking capacity
$\mathrm{I}^{2} \mathrm{t}=\mathrm{K}$	constant pass-through energy setting
$\mathrm{t}=\mathrm{K}$	constant tripping time setting
------------	long time trip curve
Current tolerance	short time trip curve

10.1.2 Long time Tripping curve (S2-Sg); tr $=3-15$

10

10^{0}
10^{1}

$$
\begin{array}{cc}
\mathrm{I} / \mathrm{I}_{\mathrm{r}} & \\
\mathrm{I}_{\mathrm{cu}}=36-50-70-100 \mathrm{kA} \quad \mathrm{I}_{\max }=1600 \mathrm{~A} & 3-4 \mathrm{P} \quad \mathrm{U}_{\mathrm{e}}=415 \mathrm{Vac} \quad \text { (IEC/EN 60947-2) }
\end{array}
$$

Value	Description
t	time
1	current
I_{r}	long time setting current
t_{r}	long time delay
Isd	short time setting current
tsd	short time delay
li	instantaneous release
Icu	rated ultimate short-circuit breaking capacity
$\mathrm{I}^{2} \mathrm{t}=\mathrm{K}$	constant pass-through energy setting
$\mathrm{t}=\mathrm{K}$	constant tripping time setting
--momomom	long time trip curve
------------	short time trip curve
Current tolerance	10\% up to $\mathrm{I}_{\text {sd }} ; 20 \%$ up to I_{i}

10.1.3 Long time Tripping curve (S2-Sg) ; $\mathrm{tr}=20$

Value	Description
t	time
I	current
I_{r}	long time setting current
t_{r}	long time delay
Isd	short time setting current
tsd	short time delay
Ii	instantaneous release
Icu	rated ultimate short-circuit breaking capacity
$\mathrm{I}^{2} \mathrm{t}=\mathrm{K}$	constant pass-through energy setting
$\mathrm{t}=\mathrm{K}$	constant tripping time setting
-----------	long time trip curve
Current tolerance	10\% up to $\mathrm{I}_{\text {sd }} ; 20 \%$ up to I_{i}

10.1.4 Long time Tripping curve (S2-Sg) ; tr $=25-30$

Value	Description
t	time
I	current
I_{r}	long time setting current
t_{r}	long time delay
Isd	short time setting current
tsd	short time delay
Ii	instantaneous release
Icu	rated ultimate short-circuit breaking capacity
$\mathrm{I}^{2} \mathrm{t}=\mathrm{K}$	constant pass-through energy setting
$\mathrm{t}=\mathrm{K}$	constant tripping time setting
$-\cdots--------$	Iong time trip curve
Current tolerance	short time trip curve

10.2.1 Short time Tripping curve (S1)

Value	Description
t	time
I	current
I_{r}	long time setting current
t_{r}	long time delay
Isd	short time setting current
tsd	short time delay
li	instantaneous release
Icu	rated ultimate short-circuit breaking capacity
$\mathrm{I}^{2} \mathrm{t}=\mathrm{K}$	constant pass-through energy setting
$\mathrm{t}=\mathrm{K}$	constant tripping time setting
$-\quad$ long time trip curve	
----------	short time trip curve
Current tolerance	10\% up to $\mathrm{I}_{\text {sd }} ; 20 \%$ up to I_{i}

10.3.1 Instantaneous time Tripping curve (S1)

Value	Description
t	time
I	current
I_{r}	long time setting current
t_{r}	long time delay
Isd	short time setting current
tsd	short time delay
Ii	instantaneous release
Icu	rated ultimate short-circuit breaking capacity
$\mathrm{I}^{2} \mathrm{t}=\mathrm{K}$	constant pass-through energy setting
$\mathrm{t}=\mathrm{K}$	constant tripping time setting
-----------	long time trip curve
-----	short time trip curve
Current tolerance	10\% up to $\mathrm{I}_{\text {sd }} ; 20 \%$ up to I_{i}

Value	Description
t	time
I	current
I_{r}	long time setting current
t_{r}	long time delay
Isd	short time setting current
tsd	short time delay
Ii	instantaneous release
Icu	rated ultimate short-circuit breaking capacity
$\mathrm{I}^{2} \mathrm{t}=\mathrm{K}$	constant pass-through energy setting
$\mathrm{t}=\mathrm{K}$	constant tripping time setting
-----------	long time trip curve
short time trip curve	
Current tolerance	10% up to $\mathrm{I}_{\text {sd }} ; 20 \%$ up to I_{i}

10.4 Pass-through specific energy characteristic curve

Update: 03/07/2018

10.5 Cut-off peak current characteristic curve (kA)

Update: 02/07/2018

Value	Description
I_{cc}	estimated short circuit symmetrical current (RMS value)
I_{p}	maximum short circuit peak current
	maximum prospective short circuit peak current corresponding at the power factor
	maximum real peak short circuit current

A) Derating Temperature and configurations

	Ambient temperature									
	$30^{\circ} \mathrm{C}$		$40^{\circ} \mathrm{C}$		$50^{\circ} \mathrm{C}$		$60^{\circ} \mathrm{C}$		$70^{\circ} \mathrm{C}$	
Fixed version	$\mathrm{I}_{\text {max }}(\mathrm{A})$	$\mathrm{I}_{\mathrm{r}} / \mathrm{I}_{\mathrm{n}}$	$\mathrm{I}_{\text {max }}(\mathrm{A})$	$\mathrm{I}_{\mathrm{r}} / \mathrm{I}_{\mathrm{n}}$	$\mathrm{I}_{\text {max }}(\mathrm{A})$	I_{r} / I_{n}	$\mathrm{I}_{\text {max }}(\mathrm{A})$	$\mathrm{I}_{\mathrm{r}} / \mathrm{I}_{\mathrm{n}}$	$\mathrm{I}_{\text {max }}(\mathrm{A})$	$\mathrm{I}_{\mathrm{r}} / \mathrm{I}_{\mathrm{n}}$
Spreaders, flexible cable	1600	1	1600	1	1600	1	1360	0.85	1200	0.75
Spreaders, rigid cable	1600	1	1600	1	1600	1	1360	0.85	1200	0.75
Spreaders, bars $2 \times 50 \times 10 \mathrm{Cu}$	1600	1	1600	1	1600	1	1520	0.95	1360	0.85
Rear flat terminals, bars $4 \times 50 \times 5 \mathrm{Cu}$, horizontal	1600	1	1600	1	1600	1	1600	1	1440	0.9
Rear flat staggered terminals, bars $4 \times 50 \times 5 \mathrm{Cu}$, horizontal	1600	1	1600	1	1600	1	1600	1	1440	0.9
Draw-out version	$\mathrm{I}_{\text {max }}$ (A)	$\mathrm{I}_{\mathrm{r}} / \mathrm{I}_{\mathrm{n}}$	$\mathrm{I}_{\text {max }}(\mathrm{A})$	$\mathrm{I}_{\mathrm{r}} / \mathrm{I}_{\mathrm{n}}$						
Spreaders, flexible cable	1600	1	1600	1	1600	1	1280	0.8	1120	0.7
Spreaders, rigid cable	1600	1	1600	1	1600	1	1280	0.8	1120	0.7
Spreaders, bars 2x50x10 Cu	1440	0.9	1440	0.9	1440	0.9	1120	0.7	960	0.6
Rear flat terminals, bars $2 \times 100 \times 5 \mathrm{Cu}$, vertical	1440	0.9	1440	0.9	1440	0.9	1120	0.7	960	0.6
Rear flat staggered terminals, bars $2 \times 100 \times 5 \mathrm{Cu}$, vertical	1440	0.9	1440	0.9	1440	0.9	1120	0.7	960	0.6
Rear flat terminals, bars $4 \times 50 \times 5 \mathrm{Cu}$, horizontal	1600	1	1600	1	1600	1	1440	0.9	1120	0.7
Rear flat staggered terminals, bars $4 \times 50 \times 5 \mathrm{Cu}$, horizontal	1600	1	1600	1	1600	1	1440	0.9	1120	0.7

For further technical information, please contact Legrand technical support.

Data indicated in this document refers exclusively to test conditions according to product standards, unless otherwise indicated in the documentation.
For the different conditions of use of the product, inside electrical equipment or in any case inserted in the installation context, refer to the regulatory requirements of the equipment, local regulations and design specifications of the system

