Phone :+33 0555068787 - Fax :+33 0555068888
DPX ${ }^{3} 630$ electronic circuit breakers

Reference(s) :

from 422056 to 4220 95;
from 422096 to 4221 35;
from 422136 to 4221 75;
from 422176 to 4222 15;
from 422498 to 4225 37;
PAGES
CONTENTS

1. USE
2. RANGE
3. DIMENSIONS AND WEIGHTS
4. OVERVIEW
5. ELECTRICAL CONNECTIONS
6. ELECTRICAL AND MECHANICAL
CHARACTERISTICS

1. USE

DPX^{3} platform, for premium segment, is able to cover extended ranges in terms of breaking capacities and rated currents, make protection suitable for different levels of power involved in installations.

DPX ${ }^{3}$ platform provide easy assembly procedures during the phase of installation and mounting of accessories, suitable for professional use.

2. RANGE

	S1		S2		S2 + measure		Sg		Sg + measure	
	36kA									
$\mathrm{I}_{\mathrm{n}}(\mathrm{A})$	3 P	4P								
250	422498	422503	422056	422061	422096	422101	422136	422141	422176	422181
320	422499	422504	422057	422062	422097	422102	422137	422142	422177	422182
400	422500	422505	422058	422063	422098	422103	422138	422143	422178	422183
500	422501	422506	422059	422064	422099	422104	422139	422144	422179	422184
630	422502	422507	422060	422065	422100	422105	422140	422145	422180	422185
	50kA									
$\mathrm{I}_{\mathrm{n}}(\mathrm{A})$	3P	4P	3 P	4P	3P	4P	3P	4P	3P	4P
250	422508	422513	422066	422071	422106	422111	422146	422151	422186	422191
320	422509	422514	422067	422072	422107	422112	422147	422152	422187	422192
400	422510	422515	422068	422073	422108	422113	422148	422153	422188	422193
500	422511	422516	422069	422074	422109	422114	422149	422154	422189	422194
630	422512	422517	422070	422075	422110	422115	422150	422155	422190	422195
	70kA									
$\mathrm{In}_{\mathrm{n}}(\mathrm{A})$	3P	4P	3P	4P	3 P	4P	3P	4P	3P	4P
250	422518	422523	422076	422081	422116	422121	422156	422161	422196	422201
320	422519	422524	422077	422082	422117	422122	422157	422162	422197	422202
400	422520	422525	422078	422083	422118	422123	422158	422163	422198	422203
500	422521	422526	422079	422084	422119	422124	422159	422164	422199	422204
630	422522	422527	422080	422085	422120	422125	422160	422165	422200	422205
	100kA		100kA		00kA		100k		100kA	
$\mathrm{In}^{\text {(}}$ A $)$	3P	4P								
250	422528	422533	422086	422091	422126	422131	422166	422171	422206	422211
320	422529	422534	422087	422092	422127	422132	422167	422172	422207	422212
400	422530	422535	422088	422093	422128	422133	422168	422173	422208	422213
500	422531	422536	422089	422094	422129	422134	422169	422174	422209	422214
630	422532	422537	422090	422095	422130	422135	422170	422175	422210	422215

3. DIMENSIONS AND WEIGHTS

3.1 Dimensions

Implantation

Fixed version, with front terminals

Reference(s) :
from 422056 to 4220 95;
from 422096 to 4221 35;
from 422136 to 4221 75;
from 422176 to 4222 15;
from 422498 to 4225 37;

Plug-in version, with cage terminals

Plug-in version, without front terminals

Draw-out version, flat rear terminals

Draw-out version with sliding auxiliary contacts

Motor operator for synchronized operations (energy storage type)

Motor operator for general purpose operations (direct action type)

3.2 Weights

Configuration		Weights (Kg)			
		3P		4P	
	$\mathbf{I}_{\mathbf{n}} \leq 400 \mathrm{~A}$	$\mathbf{I}_{\mathrm{n}} \geq 500 \mathrm{~A}$	$\mathbf{I}_{\mathrm{n}} \leq 400 \mathrm{~A}$	$\mathbf{I}_{\mathrm{n}} \geq 500 \mathrm{~A}$	
Circuit breaker (fixed version)	5.80	6.20	7.30	7.80	
Plug-in (with front terminals)*	3.35	3.35	4.29	4.29	
Plug-in (with rear terminals)*	3.55	3.55	4.79	4.79	
Draw-out *	2.3	2.3	5.5	5.5	
* to add to fixed version					

4. OVERVIEW
4.1 Supplied with:

- fixing screws (4 for 3P and 4P)
- \quad screws for connections (6 for 3P and 8 for 4P)
- \quad phase insulators (2 for 3 P and 3 for 4 P)

5. ELECTRICAL CONNECTIONS

5.1 Mounting possibilities

On plate:

- Vertical
- Horizontal
- Supply invertor type

5.2 Mounting

(see instruction sheet for detailed mounting procedures)

Busbars/cable lugs:

Cables.

6. ELECTRICAL AND MECHANICAL CHARACTERISTICS

Circuit breaker

Circuit Breaker	$\mathrm{DPX}^{3} 630 \mathrm{~F} / \mathrm{N} / \mathrm{H} / \mathrm{L}$ $(36 \mathrm{kA}, 50 \mathrm{kA}, 70 \mathrm{kA}, 100 \mathrm{kA})$
Rated current (A)	250, 320, 400, 500, 630
Poles	3-4
Pole pitch (mm)	42
Rated insulation voltage ($50 / 60 \mathrm{~Hz}$) $\mathrm{U}_{1}(\mathrm{~V})$	800
Rated operating voltage ($50 / 60 \mathrm{~Hz}$) $\mathrm{U}_{8}(\mathrm{~V})$	690
Rated impulse withstand current $\mathrm{U}_{\text {imp }}$	8
Rated frequency (Hz)	50-60
Operating temperature (${ }^{\circ} \mathrm{C}$)	-25 - 70
Mechanical endurance (cycles)	20000
Mechanical endurance with motor control	10000
Electrical endurance at I_{n} (cycles)	4000
Electrical endurance at $0.5 \mathrm{I}_{\mathrm{n}}$ (cycles)	8000
Utilization category	$\mathrm{B}\left(\mathrm{I}_{n} \leq 400 \mathrm{~A}\right) ; \mathrm{A}\left(\mathrm{I}_{\mathrm{n}} \geq 500 \mathrm{~A}\right)$
Suitable for isolation	Yes
Type of protection	Electronic
Electronic trip S1	Yes
Electronic trip S2	Yes
Electronic trip Sg	Yes
Thermal adjustment I_{r}	$(0.4 \div 1) \times \mathrm{I}_{\mathrm{n}}$
Magnetic adjustment $\mathrm{I}_{\text {sd }}(\mathrm{A})$	$(1.5 \div 10) \times \mathrm{I}_{\mathrm{r}}$
Neutral protection for $4 \mathrm{P}\left(\left.\%\right\|_{\text {th }}\right.$ of phase pole)	0-50-100-150-200
Dimensions (W \times H x D) (mm)	$140 \times 260 \times 105$ (3P)
	$183 \times 260 \times 105$ (4P)
Maximum weight for fixed version (kg)	6.20 (3P)
	7.80 (4P)

Together with above protections, activated in case of electric faults, the trip unit also integrates self-protection for:

- Over temperature : in case the internal temperature of protection unit exceed $95^{\circ} \mathrm{C}$;
- Auto diagnostics: in case embedded watchdog circuit detects internal malfunctions, which could compromise the correct working of microcontroller.

General remarks on protection unit
The protection units $\mathrm{S} 1 / \mathrm{S} 2 / \mathrm{Sg}$ are normally supplied by the internal current transformers (CTs).
When the current flowing through the circuit breaker is greater than 12% of the maximum power (20% of In for single phase load), the internal current supply ensures all operation of the protection unit, included LED status, display indications(*) and diagnostic functions (e.g. trip test).
(*)Display backlight and integrated measure (if available) are instead guaranteed starting from 20% of the maximum power (35% of \ln for single phase load), in absence of any other supply. In any case the external power supply is strongly recommended for the correct working of measurement, as well as RS485 communication.
To ensure the same performance when the load is less than 12% of the maximum power (20% of In for single phase load) to grant complete functions, one of the following optional power supplies can be used:

- (*)external Auxiliary power supplier or, alternatively, Modbus communication interface.
- (*)power supply temporarily connected to frontal USB socket, connected to a 5V DC power bank or PC.
- (**)power supply temporarily connected to frontal Service port, connected to specific adapter for PC (Legrand use only)

(*) available only for S2/Sg versions

(**) available only for S1 versions

In the electronic unit protection type $\mathrm{S} 2 / \mathrm{Sg}$, an energy metering central unit, if available, is integrated.
The possible parameters that can be measured are listed in the following table:

Measured	UNIT	DESCRIPTION
I_{1}	A	L1 realtime measured value
I_{2}	A	L2 realtime measured value
I_{3}	A	L3 realtime measured value
$\mathrm{I}_{\mathrm{N}}(4 \mathrm{P})$	A	N realtime measured value
I_{6}	A	G realtime measured value
$\mathrm{U}_{12} \mathrm{U}_{23} \mathrm{U}_{31}$ (3P)	V	Phase to Phase Voltage
$\mathrm{V}_{12} \mathrm{~V}_{23} \mathrm{~V}_{31}$ (4P)	V	Voltage
Freq.	Hz	Frequency
$\mathrm{P}_{\text {Tot }}$	kW	Active Power
$\mathrm{Q}_{\text {Tot }}$	kvar	Reactive Power
PF		Power Factor
$\mathrm{E}_{\mathrm{p}} \downarrow$	kWh	Consumed active energy
$\mathrm{E}_{\mathrm{p}} \uparrow$	kWh	Returned active energy
$\mathrm{E}_{\mathrm{q}} \downarrow$	kvar h	Consumed reactive energy
$\mathrm{E}_{\mathrm{q}} \uparrow$	Kvar h	Returned reactive energy
$\mathrm{THDU}_{12} / \mathrm{THDU}_{23} / \mathrm{THDU}_{31}(3 \mathrm{P})$	\%	Chained Voltage THD
$\mathrm{THDV}_{1 \mathrm{~N}} / \mathrm{THDV}_{2 N} / \mathrm{THDV}_{3 \mathrm{~N}}(4 \mathrm{P})$	\%	Voltage THD
$\mathrm{THDI}_{1} / \mathrm{THDI}_{2} / \mathrm{THDI}_{3} / \mathrm{THDI}_{\mathrm{N}}$	\%	Current THD
MEM	A $-{ }^{\circ} \mathrm{C}$	Cause of the last intervention and it

DPX ${ }^{3} 630$ electronic circuit breakers
Reference(s) :
from 422056 to 4220 95;
from 422096 to 4221 35
from 422136 to 4221 75;
from 422176 to 4222 15;
from 422498 to 4225 37;

Function performance class according to IEC 61557-12

Function symbol	Performance class	Measurement range					Other complementary characteristics				
		DPX ${ }^{3} 630 \mathrm{~A}$					$\mathrm{I}_{\max } \mathrm{PMD}$				
I_{n}		250A	320A	400A	500A	630A	250A	320A	400A	500A	630A
P	2	0.3 kW	0.3kW	0.3 kW	0.3 kW	0.3kW	300A	380A	480A	600A	750A
		360kW	460kW	580kW	720kW	900kW	$\mathrm{I}_{\mathrm{b}}=250 \mathrm{~A}, \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V}, \mathrm{f}_{\mathrm{n}}=50 \mathrm{~Hz}$				
$Q A, Q_{v}$	2	0.6kvar	0.6kvar	0.6kvar	0.6kvar	0.6kvar	300A	380A	480A	600A	750A
		360kvar	460kvar	580kvar	720 kvar	900kvar	$\mathrm{I}_{\mathrm{b}}=250 \mathrm{~A}, \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V}, \mathrm{f}_{\mathrm{n}}=50 \mathrm{~Hz}$				
$\mathrm{E}_{\text {a }}$	2	0... $999 \mathrm{GW} / \mathrm{h}$					300A	380A	480A	600A	750A
							$\mathrm{I}_{\mathrm{b}}=250 \mathrm{~A}, \mathrm{U}_{\mathrm{n}}=400 \mathrm{~V}, \mathrm{f}_{\mathrm{n}}=50 \mathrm{~Hz}$				
ErA, $\mathrm{E}_{\text {r }}$	2	0... $999 \mathrm{GW} / \mathrm{h}$					300A	380A	480A	600A	750 A
							$\mathrm{I}_{\mathrm{b}}=250 \mathrm{~A}, \mathrm{U}_{n}=400 \mathrm{~V}, \mathrm{f}_{n}=50 \mathrm{~Hz}$				
f	0.02	50...60 Hz					-				
1	2	12.5A	12.5A	12.5A	12.5A	12.5A	300A	380A	480A	600A	750A
		300 A	380A	480A	600A	750A	$\mathrm{I}_{\mathrm{b}}=250 \mathrm{~A}, \mathrm{U}_{n}=400 \mathrm{~V}, \mathrm{f}_{n}=50 \mathrm{~Hz}$				
I_{N}	2	12.5A	12.5A	12.5A	12.5A	12.5A	300A	380A	480A	600A	750A
		300 A	380A	480A	600A	750A	$\mathrm{I}_{6}=250 \mathrm{~A}, \mathrm{U}_{n}=400 \mathrm{~V}, \mathrm{f}_{\mathrm{n}}=5 \mathrm{OHz}$				
U	0.05	88...690V					-				
P_{FA}	0.05	-					300A	380A	480A	600A	750 A
							$\mathrm{I}_{6}=250 \mathrm{~A}, \mathrm{U}_{n}=400 \mathrm{~V}, \mathrm{f}_{n}=5 \mathrm{~Hz}$				
THDu	5	110...690V					-				
THD ${ }_{\text {i }}$	5	250A	250A	250A	250A	250A	-				
		250 A	320 A	400A	500A	630 A					

6.1 Main parts constituting the circuit breaker

6.2 Breaking capacity (kA)

		Breaking capacity (kA) \& $I_{\text {cs }}$			
		3P-4P			
IEC 60947-2	$\mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{cu}}$ (I_{cu} letter)	36kA (F)	50kA (N)	70kA (H)	100kA (L)
	220/240 V AC	70	100	105	150
	380/415 V AC	36	50	70	100
	440/460 V AC	30	40	60	70
	480/500 V AC	25	30	40	50
	480/550 V AC	20	22	25	28
	600 V AC	20	22	25	28
	690V AC	14	18	20	22
	$\mathrm{I}_{\mathrm{cs}}\left(\% \mathrm{I}_{\mathrm{cu}}\right)$	100	100	100	70
	Rated making capacity under short circuit I_{cm}				
	$\mathrm{I}_{\mathrm{cm}}(\mathrm{kA})$ at 415V	76.5	105	154	220
NEMA AB-1	220/240 V AC	70	100	105	150
	480/500 V AC	25	30	40	50
	690 V AC	14	18	20	22

6.3 Rated current $\left(\mathrm{I}_{\mathrm{n}}\right)$ at $40^{\circ} \mathrm{C} / 50^{\circ} \mathrm{C}$

	Phases limit trip current			
	thermal ($\mathbf{I}_{\mathbf{r}}$)		magnetic ($\left.\mathbf{I}_{\mathbf{i}}\right)$	
$\mathbf{I}_{\mathbf{n}}(\mathbf{A})$	$\mathbf{0 . 4 \times \mathbf { I } _ { \mathbf { n } }}$	$\mathbf{1 \times \mathbf { I } _ { \mathbf { n } }}$	$\mathbf{1 . 5 \times \mathbf { I } _ { \mathbf { r } }}$	$\mathbf{1 0 \times \mathbf { I } _ { \mathbf { r } }}$
250	100	250	375	2500
320	128	320	480	3200
400	160	400	600	4000
500	200	500	750	5000
630	252	630	945	6300

* For neutral adjustment, as explained in technical sheet, please consider the values ratios 100% on set currents.

6.3 Load operations

Force on handle	In $\mathbf{\leq 4 0 0 A}$	In \geq 500A
Opening operation (N)	80	130
Closing operation (N)	180	210
Restore operation (N)	145	200

DPX ${ }^{3} 630$ electronic circuit breakers
Reference(s) :
from 422056 to 4220 95;
from 422096 to 4221 35;
from 422136 to 4221 75;
from 422176 to 4222 15;
from 422498 to 4225 37;

6.4 Electrodynamic forces

The table below shows an indication of suggested distances to keep between the breaker and the first fixing point of the conductor and bars in order to reduce the effects of the electrodynamic stresses that may be created during a short circuit. In the realization of anchorage system it is recommend the use of isolators suitable for the type of conductor used and the operating voltage

$\mathbf{I}_{\mathbf{c c}}(\mathbf{k A})$	Maximum Distance (mm)
36	350
50	300
70	250
100	200

According to conductor type and bar system (except Legrand bar kits), the choice of the distance to keep is to be calibrated by the installer. Also installer must take into account the weight of the conductors so that this does not affect the electrical junction between the conductor itself and the connection point.

6.5 Power losses per pole under In

	Power losses per pole (W)									
	$\mathrm{I}_{\mathrm{n}}(\mathrm{A})$									
	250		320		400		500		630	
	Phase	Neutral								
Cage terminals	7.5	7.5	12.3	12.3	19.2	19.2	22.1	22.1	35.0	35.0
Lugs	7.5	7.5	12.3	12.3	19.2	19.2	22.1	22.1	35.0	35.0
External lugs	8.2	8.2	13.5	13.5	21.1	21.1	25.1	25.1	39.8	39.8
Spreaders	9.0	9.0	14.7	14.7	22.9	22.9	26.7	26.7	42.3	42.3
Rear terminals	8.7	8.7	14.2	14.2	22.3	22.3	26.9	26.9	42.7	42.7
Plugin version	15.0	15.0	24.7	24.7	38.5	38.5	52.3	52.3	83.0	83.0
Circuit breaker + RCD	10.6	10.6	17.4	17.4	27.2	27.2	34.6	34.6	54.9	54.9

Note: power loss in the table above are referred and measured as described in the standard IEC 60947-2 (Annex G) for circuit-breakers. Values in the table are referred to a single phase.

6.6 DERATINGS

6.6.1 Temperature

Rated current and his adjustment has to be considered relating to a rise or fall of ambient temperature and to a different version or installation conditions. The table below indicates the maximum long-time (LT) protection setting depending on the ambient temperature.

	Temperature $\mathrm{Ta}\left({ }^{\circ} \mathrm{C}\right)$		
$\mathrm{I}_{\mathrm{n}}(\mathrm{A})$	up to 50	60	70
250	250	250	250
320	320	320	320
400	400	360	340
500	500	500	500
630	630	567	536

For derating temperature with other configurations, see table A.

6.6.2 Specific condition use

Climatic conditions

according to IEC/EN 60947-1 Annex Q, Cat. F subject to temperature, humidity, vibration, shock and salt mist.

Electromagnetic disturbances (EMC)
for DPX 330 circuit breakers, according to IEC/EN 60947-2 Annex F

Pollution degree

for DPX ${ }^{3} 630$ circuit breakers, degree 3, according to IEC/EN 60947-2

6.6.3 Altitude

Altitude derating for DPX^{3} and $\mathrm{DPX}^{3}-1$

Altitude (m)	$\mathbf{2 0 0 0}$	$\mathbf{3 0 0 0}$	$\mathbf{4 0 0 0}$	$\mathbf{5 0 0 0}$
$\mathrm{U}_{\mathrm{e}}(\mathrm{V})$	690	590	520	460
$\mathrm{I}_{\mathrm{n}}(\mathrm{A})\left(\mathrm{T}_{\mathrm{a}}=\mathbf{4 0 ^ { \circ }} \mathrm{C} / 50^{\circ} \mathrm{C}\right)$	$1 \times \mathrm{I}_{n}$	$0.98 \times \mathrm{I}_{\mathrm{n}}$	$0.93 \times \mathrm{I}_{\mathrm{n}}$	$0.9 \times \mathrm{I}_{\mathrm{n}}$

7. CONFORMITY

DPX 3 range of product concerning circuit-breakers and switchdisconnectors exceed compliance with the IEC/EN standard 60947-2 and 60947-3 respectively. Certification available by IECEE CB-scheme or LOVAG Compliance scheme.
Marks as CCC (China), EAC (Eurasian Federation) or different local certification are available.
DMX ${ }^{3}$ are in conformity with the Lloyds Shipping Register, RINA and Bureau Veritas Marine.

DMX ${ }^{3}$ respect the European Directives REACh, RoHS, RAEE and Product Environment Product (PEP Ecopassport) are available.

For specific information, please contact Legrand support.

7.1 Marking

Product (borh circuit breakers anc switch disconnectors) are provided with labelling in full conformity to the referred standard and directives requirements by laser or sticker labels as:

Product laser label on front
-Manufacturer responsible
-Denomination, type product, code -Standard conformity
-Standard characteristics declared
-coloured identification of I_{cu} at 415 V

Knobs version (S1 type)

Display version (S2/Sg type)

Product sticker label on side

-Manufacturer responsible
-Denomination and type product
-Standard conformity
-Mark/Licence (if any)
-Directive requirements
-bar code identification product
-Manufacturing Country

Mark sticker label on side
-Product code
-Mark/Licence (if any)
-Country deviation, if any

Packaging sticker label

-Manufacturer responsible
-Denomination and type product
-Standard conformity
-Mark/Licence (if any)
-Directive requirements
-bar code identification product

1 DPX ${ }^{3}$
422155

- Disioncteur
- MCCB
- Автоматичесский выккл - Автоматиесккй вык $\operatorname{In}=630 \mathrm{~A} 4 \mathrm{IP}$ ICU 50
IECIEN $60947-2$

8. EQUIPMENTS AND ACCESSORIES

8.1 Earth leakage modules

Earth leakage characteristics for DPX ${ }^{3} 630$		
	Standard	with Led
Type	A - S	A - S
Uninterrupted nominal current $\mathrm{I}_{\mathrm{u}}(\mathrm{A})$	up to 630	up to 630
Rated isolated voltage $\mathrm{U}_{\mathrm{i}}(\mathrm{V}$ AC)	500	500
Rated operating voltage $\mathrm{U}_{\mathrm{e}}(\mathrm{VAC})(50-60 \mathrm{~Hz})$	500	500
Operating voltage (V AC) ($50-60 \mathrm{~Hz}$)	$230 \div 500$	$110 \div 500$
Nominal frequency (Hz)	50-60	50-60
Operating temperature (${ }^{\circ} \mathrm{C}$)	$-25 \div 70$	$-25 \div 70$
Trip	electronic	electronic
Earth leakage time adjustments (s)	0-0.3-1-3	0-0.3-1-3
Earth leakage breaking capacity $\mathrm{I}_{\mathrm{dm}}\left(\% \mathrm{I}_{\mathrm{cu}}\right)$	60	60
Earth leakage protection adjustments $\mathrm{I}_{\Delta n}(\mathrm{~A})$	$0.03 \div 3$	$0.03 \div 3$
Side-by-side mounting	no	no
Underneath mounting	yes	yes
50\% Earth fault detection contact $I_{\text {dn }}$	no	yes
Clip on rail DIN 35	no	no
Dimensions (W $\times \mathrm{H} \times \mathrm{D}$) (mm) for 4P	$183 \times 152 \times 105$	$183 \times 152 \times 106$

(Power losses, see par. 5.4)
Standard
$\mathrm{I}_{\mathrm{n}}=400 \mathrm{~A} \quad 3$
ref. 026060 ref. 026061 ref. 026064
ref. 026065
ref. 026063
ref. 026067

8.2 Releases (for DPX 330 / DPX ${ }^{3}$ 1600)

- shunt releases with voltage:

24 Vac and dc
ref. 422239
48 Vac and dc
$110 \div 130 \mathrm{Vac}$ and dc
ref. 422240
ref. 422241
ref. 422242
ref. 422243

Reference(s) :
from 422056 to 4220 95;
from 422096 to 4221 35;
from 422136 to 4221 75;
from 422176 to 4222 15;
from 422498 to 4225 37;

- time-lag undervoltage releases (800 ms)

Time-lag modules with voltage:
230 V ac
ref. 026190
400 V ac ref. 026191

Universal Release
ref. 422623
(to be equipped with a time-lag module 0261 90/91)

8.3 Auxiliary contacts (for DPX ${ }^{3} 630$ / DPX ${ }^{3}$ 1600)

Changeover switch 3A - 250 VAC
ref. 421011
To show the state of the contacts or opening of the $\mathrm{DPX}^{3} / \mathrm{DPX}^{3}-\mathrm{I}$ on a fault:

$$
\begin{array}{lll}
\circ & \text { Auxiliary contact (standard) } & \text { OC } \\
\circ & \text { Fault signal } & \text { CTR }
\end{array}
$$

Auxiliary contact electrica characteristics		
Rated voltage (V_{n})	V (ac or dc)	24 to 250
Intensity (A)	24 V dc	5
	48 V dc	1.7
	110 V dc	0.5
	230 V dc	0.25
	110 V ac	4
	230/250 V ac	3

Configurations:
$\mathrm{DPX}^{3} 630 \rightarrow 2$ auxiliary contacts +1 fault signal +1 release

To get more information on auxiliary mounting procedures, please refer to product instruction sheet.

8.4 Universal keylocks

These keylocks must be used for all the accessories that can be locked:

- rotary handle
- motor operator
- plug-in mechanism
- draw-out mechanism

For each of these, a specific accessory (indicated in the specific section of this datasheet) must be added in order to get the complete locking kits for the specific application.

- 1 lock +1 flat key with random mapping
ref. 423880
- 1 lock +1 flat key with fixed mapping (EL43525)
- 1 lock +1 flat key with fixed mapping (EL43363)
- 1 lock +1 star key with random mapping

8.4 Rotary handles

Direct on DPX ${ }^{3}$ (with auxiliary option)

- Standard (black)
ref. 026241
- For emergency use (red / yellow) adapting on standard handle ref. 422238

Vari-depth handle IP55 (with auxiliary option)

- Standard (black)
ref. 026281
- For emergency use (red / yellow) adapting on standard handle
ref. 026282

Locking accessories (for vary-depth handle with auxiliary option)

- Key lock accessory for vari-depth rotary handle
ref. 422807

Ref. 423807 must be used with universal keylocks to get the complete locking kit for rotary handle

Locking accessories (for direct handle)

- Key barrel and flat key
ref. 026225
Direct on DPX3 (no auxiliary option and door defeat function)
- Standard (black)
ref. 420162
- For emergency use (red / yellow) adapting on standard handle
ref. 420165

Vari-depth handle IP55 (no auxiliary option and door defeat function)

- Standard (black)
ref. 420163
- For emergency use (red / yellow) adapting on standard handle
ref. 420176

8.5 Motor operators (front operated)

For general purpose operations (direct action type):

- 230 V ac
ref. 422630

For synchronized operations (energy storage type).

- 24 V ac and dc
ref. 026140
- 48 V ac and dc
ref. 026141
- 230 V ac
ref. 026142

	LG-422630		LG-0261 40-41-44	
Type	Directdrive		Energy storage	
Rated operating voltage (U_{C}) $-A C$	230 V AC $50-60 \mathrm{~Hz}$		24-48-230	
Rated operating voltage (U_{C}) $-D C$	230 V AC 50-60 Hz		24-48-230	
Voltage range (\%UC)	85:110		85:110	
	Opening	Closing	Opening	Closing
Pick-up consumption (W/VA)	240	200	300	300
Hold consumption (W/A)	80	120	300	300
Operating time / complete electric operation (ms)	450	550	2000	100
Operating time / main contacts change position (ms)	270	550	n/a	n/a
Mechanical endurance ($0-\mathrm{Ccycles}$) $@_{n}=630 \mathrm{~A}$	10000		n/a	
Electrical endurance ($0-\mathrm{C}$ cycles) $@_{n}=630 \mathrm{~A}$	4000		4000	
Cycles / minutes		tomatic perations ow	10	4

Locking accessories

- Key lock accessory for motor operator
ref. 422806
Ref. 422806 must be used with universal keylocks to get the complete locking kit for motor operator

8.6 Mechanical accessories

- Padlock (for locking in "OPEN" position)
ref. 026240
- Insulated shields (phase insulators) ref. 026230
- Sealable terminal shields:

\circ	Set of 2 (for 3P)
\circ	Set of 3 (for 4P) 026244

- Terminal covers to guarantee IP20:

$$
\begin{array}{lll}
\circ & \text { Set of 2 (for 3P) } & \text { ref. } 026234 \\
\circ & \text { Set of } 3 \text { (for 4P) } & \text { ref. } 026235
\end{array}
$$

8.7 Connection accessories

Cage terminals

- Set of 4 terminals for cables $300 \mathrm{~mm}^{2} \max$ (rigid) ref. 026250 or $240 \mathrm{~mm}^{2}$ max (flexible) $\mathrm{Cu} / \mathrm{Al}$
- Set of 4 high-capacity terminals for cables
ref. 026251
$2 \times 240 \mathrm{~mm}^{2}$ max (rigid) or $2 \times 185 \mathrm{~mm}^{2} \mathrm{max}$ (flexible) $\mathrm{Cu} / \mathrm{Al}$

Extended front terminals

- Set of 4
ref. 026247
Spreaders (incoming or outcoming):
- \quad Set of 2 (for 3P)
ref. 026248
- \quad Set of 3 (for 4P) ref. 026249

Rear terminals (incoming or outcoming):
(used to convert the fixed version with front terminals into the fixed version with rear terminals)

- for 3P
ref. 026352
- for 4 P ref. 026353

Adaptor for lug

(for connecting bare cables with lugs)

- \quad Set of 4 adaptors + insulated shields
ref. 026246

8.8 Plug-in version

(A plug-in is a DPX ${ }^{3}$ fitted with special terminals and mounted on a plugin base)

Special terminals for plug-in / draw-out base

(for incoming and outcoming terminals)

- Set of 6 terminals (3P) ref. 422220
- Set of 8 terminals (4P) ref. 422221

Bases

(accept DPX³/DPX³-/ fitted with special terminals)

- Front terminal mounting base for 3 P
ref. 422222
- Front terminal mounting base for 4 P
ref. 422223
- Flat rear terminal mounting base for 3P
ref. 422224
- Flat rear terminal mounting base for 4P
ref. 422225

Bases for breakers with mounted earth leakage module

- Front terminal mounting base for 4 P
ref. 422226
- Flat rear terminal mounting base for 4P
ref. 422227

Accessories

- Set of 2 extractor handle
ref. 422228
- Set of connectors (24-pin)
ref. 422229

8.9 Draw-out version

(A DPX ${ }^{3}$ draw-out version is a plug-in DPX ${ }^{3}$ fitted with a "Debro-lift" mechanism which can be used to withdraw the DPX ${ }^{3}$ while keeping it on its base)
"Debro-lift" mechanism
(supplied with a rigid slide and handle for drawing-out)

- For base only (3P) ref. 422231
\bullet For base only (4P) ref. 422232
- For base with earth leakage module (4P) ref. 422233

Keylock for "Debro-lift" mechanism

- One key for DPX³ only
(enable locking in draw - out position)
- Key lock accessory for draw-out
(frontal masks for motor operator or rotary handle) ref. 422808
- Key lock accessory for draw-out

Ref. 422808 and 422810 must be used with universal keylocks to get the complete locking kit for draw-out version

Accessories for "Debro-lift" mechanism

- Signalling contact (plugged-in / draw-out)
ref. 026574
- Handle for drawing - out
ref. 026575

Auxiliary contacts

- Automatic auxiliary contacts for draw-out version ref. 422230 (up to 2 contacts by DPX³)

Plate for transfer switches (factory assembled)
(A transfer switch plate is composed of one plate with interlock for 2 devices)

- Plate for breaker or trip-free switch fixed version
ref. 026409
- Plate for breaker or trip-free switch plug-in and draw-out version

8.10 Specific accessories for electronic version

Auxiliary power supply

- For supplying electronic units
ref. 421083
Is used to supply DPX ${ }^{3}$ electronic circuit breakers $\mathrm{S} 2 / \mathrm{Sg}$ with / without earth leakage module and with / without energy metering central unit. It is mandatory in case of electronic breakers with integrated measure and not interconnected in a supervision system (MODBUS network not requested) to correctly manage the measure functions

Technical characteristics:

- Input voltage: 24 V ad/dc (+/-10\%)
- Enclosure: 2 DIN modules
- Output: up to 250 mA (to supply many circuit breakers according to the following table):

$\mathbf{4 2 1 0 8 3}$	DPX $^{\mathbf{3}} \mathbf{2 5 0 / 6 3 0 / 1 6 0 0}$	$[\mathrm{mA}]$
out MAX = 250 mA	Electronic $(\mathrm{S} 2 / \mathrm{Sg})$	50
	Electronic with power metering $(\mathrm{S} 2 / \mathrm{Sg})$	62.5
	Electronic with residual current protection $(\mathrm{S} 2)$	50
	Electronic with residual current protection and power metering (S2)	62.5

According to single absorptions, it can be possible to connect more than one breaker

MODBUS communication

- RS485 MODBUS communication interface
ref. 421075
Is used for sharing on MODBUS network all information managed by DPX 3 electronic circuit breakers $\mathrm{S} 2 / \mathrm{Sg}$ with / without earth leakage module and with / without energy metering central unit.

Technical characteristics:

- USB local PC connection
- Input voltage: 24 V ad/dc (+/- 10\%)
- Enclosure: 1 DIN modules
- MODBUS address configuration / transmission mode / transmission speed by physic configurators
- Output relay ($220 \mathrm{~V}-0,2 \mathrm{~A}$): to signal tripped position

Consumption: 90 mA

It is possible to connect only one breaker to the interface.

In case of use of MODBUS interface 4210 75, the external power supply module 421083 is not necessary because the external power is already provided by the MODBUS module

Web server

- For remote viewing of values collected on electricity meters and multi-function measuring units

32 metering points
ref. 026178
Unlimited metering points
ref. 026179

Software

- To display values collected on electricity meters and multifunction measuring units on a PC connected to the network

32 metering points	ref. 026188
Unlimited metering points	ref. 026189

Touch screen

- To show data collected by $\mathrm{DX}^{3}, \mathrm{DPX}^{3}, \mathrm{DMX}^{3}, \mathrm{EMDX}^{3}$. It can manage up to 8 devices ref. 026156

9. CURVES

Update: 02/07/2018
9.1.1 Tripping curve (for S1 version) [1/3]

Value	Description
t	time
1	current
I_{r}	long time setting current
t_{r}	long time delay
Isd	short time setting current
tsd	short time delay
li	instantaneous release
Icu	rated ultimate short-circuit breaking capacity
$\mathrm{I}^{2} \mathrm{t}=\mathrm{K}$	constant pass-through energy setting
$\mathrm{t}=\mathrm{K}$	constant tripping time setting
--------------	long time trip curve
------------	short time trip curve
Current tolerance	10% up to $I_{\text {sd }} ; 20 \%$ up to I_{i}

9.1.2 Tripping curve (for S1 version)

$\mathrm{I}_{\mathrm{cu}}=36-50-70-100 \mathrm{kA} \quad \mathrm{I}_{\max }=630 \mathrm{~A} \quad 3-4 \mathrm{P} \quad \mathrm{U}_{\mathrm{e}}=415 \mathrm{Vac} \quad$ (IEC/EN 60947-2)

Value	Description
t	time
I	current
I_{r}	long time setting current
t_{r}	long time delay
Isd	short time setting current
tsd	short time delay
Ii	instantaneous release
Icu	rated ultimate short-circuit breaking capacity
$\mathrm{I}^{2} \mathrm{t}=\mathrm{K}$	constant pass-through energy setting
$\mathrm{t}=\mathrm{K}$	constant tripping time setting
------------	long time trip curve
$-----\quad$ short time trip curve	
Current tolerance	10% up to $\mathrm{I}_{\text {sd }} ; 20 \%$ up to I_{i}

9.1.3 Tripping curve (for S1 version) [3/3]

$I_{\mathrm{cu}}=36-50-70-100 \mathrm{kA} \quad \mathrm{I}_{\max }=630 \mathrm{~A} \quad 3-4 \mathrm{P} \quad \mathrm{U}_{\mathrm{e}}=415 \mathrm{Vac} \quad$ (IEC/EN 60947-2)

Value	
t	time
I	current
I_{r}	long time setting current
t_{r}	long time delay
Isd	short time setting current
tsd	short time delay
Ii	instantaneous release
Icu	rated ultimate short-circuit breaking capacity
$\mathrm{I}^{2} \mathrm{t}=\mathrm{K}$	constant pass-through energy setting
$\mathrm{t}=\mathrm{K}$	constant tripping time setting
-----------	short time trip curve
Current tolerance	10\% up to $\mathrm{I}_{\text {sd }}$ 20\% up to I_{i}

9.2.1 Tripping curve (for $\mathrm{S} 2 / \mathrm{Sg}$ version), $\mathrm{tr}=3 \div 15 \mathrm{~s} \quad[1 / 5]$

$1 / I_{r}$ $I_{c u}=36-50-70-100 \mathrm{kA} \quad \mathrm{I}_{\max }=630 \mathrm{~A} \quad 3-4 \mathrm{P} \quad \mathrm{U}_{\mathrm{e}}=415 \mathrm{Vac} \quad$ (IEC/EN 60947-2)

Value	Description
t	time
1	current
I_{r}	long time setting current
t_{r}	long time delay
Isd	short time setting current
tsd	short time delay
Ii	instantaneous release
Icu	rated ultimate short-circuit breaking capacity
$1^{2} \mathrm{t}=\mathrm{K}$	constant pass-through energy setting
$\mathrm{t}=\mathrm{K}$	constant tripping time setting
	long time trip curve
------------	short time trip curve
Current tolerance	10\% up to $\mathrm{I}_{\text {sd }} ; 20 \%$ up to I_{i}

9.2.2 Tripping curve (for $\mathrm{S} 2 / \mathrm{Sg}$ version), $\mathrm{tr}=20 \mathrm{~s}$ [2/5]

Value	Description
t	time
I	current
I_{r}	long time setting current
t_{r}	long time delay
Isd	short time setting current
tsd	short time delay
Ii	instantaneous release
Icu	rated ultimate short-circuit breaking capacity
$\mathrm{I}^{2} \mathrm{t}=\mathrm{K}$	constant pass-through energy setting
$\mathrm{t}=\mathrm{K}$	constant tripping time setting
-----------	Iong time trip curve
Current tolerance	10\% up to $\mathrm{I}_{\text {sdip }}$ 20\% up to I_{i}

9.2.3 Tripping curve (for $\mathrm{S} 2 / \mathrm{Sg}$ version), $\mathrm{tr}=25 \div 30 \mathrm{~s} \quad[3 / 5]$

> Update: 02/07/2018

9.2.4 Tripping curve (for $\mathrm{S} 2 / \mathrm{Sg}$ version) [4/5]

Value	
t	time
I	current
I_{r}	Iong time setting current
t_{r}	long time delay
Isd	short time setting current
tsd	short time delay
Ii	instantaneous release
Icu	rated ultimate short-circuit breaking capacity
$\mathrm{I}^{2} \mathrm{t}=\mathrm{K}$	constant pass-through energy setting
$\mathrm{t}=\mathrm{K}$	constant tripping time setting
-----------	long time trip curve
current tolerance	10\% up to $\mathrm{I}_{\text {sd }} ; 20 \%$ up to I_{i}

9.2.5 Tripping curve (for S2/Sg version) [5/5]

10^{3}

$\mathrm{I}_{\mathrm{cu}}=36-50-70-100 \mathrm{kA} \quad \mathrm{I}_{\max }=630 \mathrm{~A} \quad 3-4 \mathrm{P} \quad \mathrm{U}_{\mathrm{e}}=415 \mathrm{Vac} \quad$ (IEC/EN 60947-2)

Value	
t	time
I	current
I_{r}	long time setting current
t_{r}	long time delay
Isd	short time setting current
tsd	short time delay
Ii	instantaneous release
Icu	rated ultimate short-circuit breaking capacity
$\mathrm{I}^{2} \mathrm{t}=\mathrm{K}$	constant pass-through energy setting
$\mathrm{t}=\mathrm{K}$	constant tripping time setting
-----------	long time trip curve
Current tolerance	10\% up to $\mathrm{I}_{\text {sd }} ; 20 \%$ up to I_{i}

9.3 Pass-through specific energy characteristic curve

Update: 03/07/2018

Value	Description
I_{cc}	short circuit current
$\mathrm{I}^{2} \mathrm{t}\left(\mathrm{A}^{2} \mathrm{~s}\right)$	pass-through specific energy

9.4 Cut-off peak current characteristic curve (kA)

Update: 02/07/2018

$\mathrm{I}_{\mathrm{cu}}=36-50-70-100 \mathrm{kA} \quad \mathrm{I}_{\max }=630 \mathrm{~A} \quad 3-4 \mathrm{P} \quad \mathrm{U}_{\mathrm{e}}=415 \mathrm{Vac}$ (IEC/EN 60947-2)

Value	Description
I_{cc}	estimated short circuit symmetrical current (RMS value)
I_{p}	maximum short circuit peak current
	maximum prospective short circuit peak current corresponding at the power factor
	maximum real peak short circuit current

A) Derating Temperature and configurations

		Ambient temperature									
		$30^{\circ} \mathrm{C}$		$40^{\circ} \mathrm{C}$		$50^{\circ} \mathrm{C}$		$60^{\circ} \mathrm{C}$		$70^{\circ} \mathrm{C}$	
Fixed version		$I_{\text {max }}(\mathrm{A})$	$\mathrm{I}_{\mathrm{r}} / \mathrm{I}_{\mathrm{n}}$	$\mathrm{I}_{\text {max }}(\mathrm{A})$	$\mathrm{I}_{\mathrm{r}} / \mathrm{I}_{\mathrm{n}}$						
	Cage terminals, flexible cable	630	1	630	1	630	1	599	0.95	567	0.9
	Lugs, flexible cable	630	1	630	1	630	1	567	0.9	536	0.85
	Lugs, rigid cable	630	1	630	1	630	1	599	0.95	567	0.9
	Spreaders, flexible cable	630	1	630	1	630	1	536	0.85	504	0.8
	Rear flat staggered terminals, flexible cable	630	1	630	1	630	1	567	0.9	536	0.85
	Cage terminals, flexible cable + RCD	630	1	630	1	536	0.85	504	0.9	473	0.75
	Lugs, flexible cable + RCD	599	0.95	599	0.95	536	0.85	504	0.8	473	0.75
	Lugs, rigid cable + RCD	630	1	599	0.95	536	0.85	504	0.8	473	0.75
	Staggered spreaders, flexible cable + RCD	630	1	630	1	536	0.85	504	0.8	473	0.75
	Rear flat staggered terminals, flexible cable + RCD	630	1	630	1	536	0.85	504	0.8	473	0.75
Draw-out version		$\mathrm{I}_{\text {max }}(\mathrm{A})$	$\mathrm{I}_{\mathrm{r}} / \mathrm{I}_{\mathrm{n}}$								
	Cage terminals, flexible cable	599	0.95	567	0.9	536	0.85	504	0.8	441	0.7
	Cage terminals, rigid cable	599	0.95	567	0.9	536	0.85	504	0.8	441	0.7
	Rear flat terminals, flexible cable	599	0.95	567	0.9	536	0.85	504	0.8	441	0.7
	Rear flat terminals, rigid cable	599	0.95	567	0.9	536	0.85	504	0.8	441	0.7
	Rear flat terminals, Cu bars, vertical	599	0.95	567	0.9	536	0.85	504	0.8	441	0.7
	Cage terminals, flexible cable + RCD	504	0.8	441	0.7	410	0.65	378	0.6	347	0.5
	Cage terminals, rigid cable + RCD	504	0.8	441	0.7	410	0.65	378	0.6	347	0.5
	Rear flat terminals, flexible cable + RCD	504	0.8	441	0.7	410	0.65	378	0.6	347	0.5
	Rear flat terminals, rigid cable	504	0.8	441	0.7	410	0.65	378	0.6	347	0.5
	Rear flat terminals, Cu bars, vertical + RCD	504	0.8	441	0.7	410	0.65	378	0.6	347	0.5

For further technical information, please contact Legrand technical support.

Data indicated in this document refers exclusively to test conditions according to product standards, unless otherwise indicated in the documentation.
For the different conditions of use of the product, inside electrical equipment or in any case inserted in the installation context, refer to the regulatory requirements of the equipment, local regulations and design specifications of the system.

